INVERTIBILITY OF FOURIER CONVOLUTION OPERATORS WITH PIECEWISE CONTINUOUS SYMBOLS ON BANACH FUNCTION SPACES

被引:0
|
作者
Fernandes, Claudio [1 ,2 ]
Karlovich, Alexei [1 ,2 ]
Valente, Marcio [2 ]
机构
[1] Univ Nova Lisboa, Fac Ciencias & Tecnol, Ctr Matemat & Aplicaoes CMA, P-2829516 Quinta Da Torre, Caparica, Portugal
[2] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Matemat, P-2829516 Quinta Da Torre, Caparica, Portugal
关键词
Fourier convolution operator; Fourier multiplier; Piecwise constant function; Piecewise continuous function; Invertibility;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend results on the invertibility of Fourier convolution operators with piecewise continuous symbols on the Lebesgue space L-p (R), p is an element of (1, infinity), obtained by Roland Duduchava in the late 1970s, to the setting of a separable Banach function space X(R) such that the Hardy-Littlewood maximal operator is bounded on X(R) and on its associate space X'(R). We specify our results in the case of rearrangement-invariant spaces with suitable Muckenhoupt weights.
引用
收藏
页码:49 / 61
页数:13
相关论文
共 50 条