A Cycle Deep Belief Network Model for Multivariate Time Series Classification

被引:23
|
作者
Wang, Shuqin [1 ,2 ]
Hua, Gang [1 ]
Hao, Guosheng [2 ]
Xie, Chunli [2 ]
机构
[1] China Univ Min & Technol, Sch Informat & Elect Engn, Xuzhou 221116, Jiangsu, Peoples R China
[2] Jiangsu Normal Univ, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1155/2017/9549323
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Multivariate time series (MTS) data is an important class of temporal data objects and it can be easily obtained. However, the MTS classification is a very difficult process because of the complexity of the data type. In this paper, we proposed a Cycle Deep Belief Network model to classify MTS and compared its performance with DBN and KNN. This model utilizes the presentation learning ability of DBN and the correlation between the time series data. The experimental results showed that this model outperforms other four algorithms: DBN, KNN ED, KNN DTW, and RNN.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Improving Time Series Prediction with Deep Belief Network
    Das S.
    Nayak M.
    Senapati M.R.
    Journal of The Institution of Engineers (India): Series B, 2023, 104 (05) : 1103 - 1118
  • [2] A Deep Neural Network Framework for Multivariate Time Series Classification With Positive and Unlabeled Data
    Ienco, Dino
    IEEE ACCESS, 2023, 11 : 20877 - 20884
  • [3] Deep belief improved bidirectional LSTM for multivariate time series forecasting
    Jiang, Keruo
    Huang, Zhen
    Zhou, Xinyan
    Tong, Chudong
    Zhu, Minjie
    Wang, Heshan
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (09) : 16596 - 16627
  • [4] Time Series Classification With Multivariate Convolutional Neural Network
    Liu, Chien-Liang
    Hsaio, Wen-Hoar
    Tu, Yao-Chung
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (06) : 4788 - 4797
  • [5] A deep multivariate time series multistep forecasting network
    Yin, Chenrui
    Dai, Qun
    APPLIED INTELLIGENCE, 2022, 52 (08) : 8956 - 8974
  • [6] Deep Coupling Network for Multivariate Time Series Forecasting
    Yi, Kun
    Zhang, Qi
    He, Hui
    Shi, Kaize
    Hu, Liang
    An, Ning
    Niu, Zhendong
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (05)
  • [7] A deep multivariate time series multistep forecasting network
    Chenrui Yin
    Qun Dai
    Applied Intelligence, 2022, 52 : 8956 - 8974
  • [8] Deep belief network-based AR model for nonlinear time series forecasting
    Xu, Wenquan
    Peng, Hui
    Zeng, Xiaoyong
    Zhou, Feng
    Tian, Xiaoying
    Peng, Xiaoyan
    APPLIED SOFT COMPUTING, 2019, 77 : 605 - 621
  • [9] Multivariate Time Series Early Classification using Multi-Domain Deep Neural Network
    Huang, Huai-Shuo
    Liu, Chien-Liang
    Tseng, Vincent S.
    2018 IEEE 5TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2018, : 90 - 98
  • [10] TapNet: Multivariate Time Series Classification with Attentional Prototypical Network
    Zhang, Xuchao
    Gao, Yifeng
    Lin, Jessica
    Lu, Chang-Tien
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 6845 - 6852