Untyped algorithmic equality for with surjective pairs Martin-Lof's logical framework

被引:0
|
作者
Abel, Andreas [1 ]
Coquand, Thierry
机构
[1] Univ Munich, Inst Informat, D-8000 Munich, Germany
[2] Chalmers, Dept Comp Sci, Gothenburg, Sweden
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Martin-Lof's Logical Framework is extended by strong Sigma-types and presented via judgmental equality with rules for extensionality and surjective pairing. Soundness of the framework rules is proven via a generic PER model on untyped terms. An algorithmic version of the framework is given through an untyped beta eta-equality test and a bidirectional type checking algorithm. Completeness is proven by instantiating the PER model with eta-equality on beta-normal forms, which is shown equivalent to the algorithmic equality.
引用
收藏
页码:345 / 395
页数:51
相关论文
共 20 条
  • [1] Untyped algorithmic equality for Martin-Lof's logical framework with surjective pairs
    Abel, A
    Coquand, T
    TYPED LAMBDA CALCULI AND APPLICATIONS, PROCEEDINGS, 2005, 3461 : 23 - 38
  • [2] JUDGMENTS OF HIGHER LEVELS IN MARTIN-LOF LOGICAL THEORY
    SCHROEDERHEISTER, P
    JOURNAL OF SYMBOLIC LOGIC, 1987, 52 (04) : 1083 - 1083
  • [3] Leibniz equality is isomorphic to Martin-Lof identity, parametrically
    Abel, Andreas
    Cockx, Jesper
    Devriese, Dominique
    Timany, Amin
    Wadler, Philip
    JOURNAL OF FUNCTIONAL PROGRAMMING, 2020, 30
  • [4] Normalization by evaluation for Martin-Lof type theory with typed equality judgements
    Abel, Andreas
    Coquand, Thierry
    Dybjer, Peter
    22ND ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 2007, : 3 - +
  • [5] Supercompilation for Martin-Lof's type theory
    Klyuchnikov, I. G.
    Romanenko, S. A.
    PROGRAMMING AND COMPUTER SOFTWARE, 2015, 41 (03) : 170 - 182
  • [6] Supercompilation for Martin-Lof’s type theory
    I. G. Klyuchnikov
    S. A. Romanenko
    Programming and Computer Software, 2015, 41 : 170 - 182
  • [7] Certifying Supercompilation for Martin-Lof's Type Theory
    Klyuchnikov, Ilya
    Romanenko, Sergei
    PERSPECTIVES OF SYSTEM INFORMATICS, PSI 2014, 2015, 8974 : 186 - 200
  • [8] Kripke Semantics for Martin-Lof's Extensional Type Theory
    Awodey, Steve
    Rabe, Florian
    TYPED LAMBDA CALCULI AND APPLICATIONS, PROCEEDINGS, 2009, 5608 : 249 - +
  • [9] KRIPKE SEMANTICS FOR MARTIN-LOF'S EXTENSIONAL TYPE THEORY
    Awodey, Steve
    Rabe, Florian
    LOGICAL METHODS IN COMPUTER SCIENCE, 2011, 7 (03)
  • [10] The Justification of Identity Elimination in Martin-Lof's Type Theory
    Klev, Ansten
    TOPOI-AN INTERNATIONAL REVIEW OF PHILOSOPHY, 2019, 38 (03): : 577 - 590