Interaction of Fluorouracil drug with boron nitride nanotube, Al doped boron nitride nanotube and BC2N nanotube

被引:58
|
作者
Mohammadi, Mohsen Doust [1 ]
Abdullah, Hewa Y. [2 ]
Kalamse, Vijayanand [3 ]
Chaudhari, Ajay [4 ]
机构
[1] Univ Tehran, Coll Sci, Sch Chem, Tehran, Iran
[2] Tishk Int Univ, Fac Educ, Phys Educ Dept, Erbil 44001, Kurdistan Reg, Iraq
[3] Shri Shivaji Coll, Dept Phys, Parbhani 431404, India
[4] Dr Homi Bhabha State Univ, Inst Sci, Dept Phys, Mumbai 400032, India
关键词
Adsorption; BN nanotube; DFT; Drug nanocarrier; Fluorouracil; THERMAL-CONDUCTIVITY; BOND ORDER; DENSITY; DEFINITION; ORBITALS; VALENCE; DFT;
D O I
10.1016/j.comptc.2022.113699
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The boron nitride nanotube (BNNT), Al-doped boron nitride (BAlNNT), and BC2N nanotube nanotubes (BC2NNT) have been used to use their outer surface as a suitable substrate for the adsorption of the Fluorouracil (5-FU) drug molecule. The computational framework used in the study of intermolecular interactions of species participating in the adsorption process was density functional theory (DFT). Various functionals, including PBE0, M06-2X, omega B97XD, and B3LYP-D3 have been employed to study the effects of electronic properties well. Also, the successful basis set 6-311G(d) has been used in all calculations. Different wave function analyses have been used to determine the type of intermolecular interactions, including natural bond orbital (NBO), non-covalent interactions (NCI), quantum theory of atoms in molecules (QTAIM) using B3LYP-D3/6-311G(d) model chemistry. All methods reveal the consistency and physical adsorption of the drug molecule onto the nanostructures. The strength and sensitivity of adsorption between the mentioned nanotubes are BAlNNT > BC2NNT > BNNT. The HOMO-LUMO energy gaps are found to be 6.545, 8.127, and 7.027 eV for BNNT, BNAlNT, and BC2NNT respectively, and depicted through the density of states (DOS) diagrams. Higher 5-FU drug adsorption energy for Al-doped BNNT indicates that the Al-doped BNNT can be used to design a 5-FU drug nanocarrier.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Boron nitride nanotube peapods
    Zettl, A
    Cumings, J
    Han, WQ
    Mickelson, W
    STRUCTURAL AND ELECTRONIC PROPERTIES OF MOLECULAR NANOSTRUCTURES, 2002, 633 : 140 - 144
  • [2] Junctions between a boron nitride nanotube and a boron nitride sheet
    Baowan, Duangkamon
    Cox, Barry J.
    Hill, James M.
    NANOTECHNOLOGY, 2008, 19 (07)
  • [3] Boron Nitride Nanotube: Synthesis and Applications
    Tiano, Amanda L.
    Park, Cheol
    Lee, Joseph W.
    Luong, Hoa H.
    Gibbons, Luke J.
    Chu, Sang-Hyon
    Applin, Samantha I.
    Gnoffo, Peter
    Lowther, Sharon
    Kim, Hyun Jung
    Danehy, Paul M.
    Inman, Jennifer A.
    Jones, Stephen B.
    Kang, Jin Ho
    Sauti, Godfrey
    Thibeault, Sheila A.
    Yamakov, Vesselin
    Wise, Kristopher E.
    Su, Ji
    Fay, Catharine C.
    NANOSENSORS, BIOSENSORS, AND INFO-TECH SENSORS AND SYSTEMS 2014, 2014, 9060
  • [4] Boron nitride nanotube, nanocable and nanocone
    Golberg, D
    Bando, Y
    Bourgeois, L
    Ma, R
    Ogawa, K
    Kurashima, K
    Sato, T
    MAKING FUNCTIONAL MATERIALS WITH NANOTUBES, 2002, 706 : 19 - 28
  • [6] Boron nitride nanotube branched nanojunctions
    Cao, L. M.
    Zhang, X. Y.
    Tian, H.
    Zhang, A.
    Wang, W. K.
    NANOTECHNOLOGY, 2007, 18 (15)
  • [7] Elastic moduli of a boron nitride nanotube
    Verma, Veena
    Jindal, V. K.
    Dharamvir, Keya
    NANOTECHNOLOGY, 2007, 18 (43)
  • [8] Sublattice Superconductivity in Boron Nitride Nanotube
    Hamze Mousavi
    Journal of Superconductivity and Novel Magnetism, 2013, 26 : 2905 - 2909
  • [9] Hydrogen adsorption on carbon-doped boron nitride nanotube
    Baierle, Rogerio J.
    Piquini, Paulo
    Schmidt, Tome M.
    Fazzio, Adalberto
    JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (42): : 21184 - 21188
  • [10] "White Graphenes": Boron Nitride Nanoribbons via Boron Nitride Nanotube Unwrapping
    Zeng, Haibo
    Zhi, Chunyi
    Zhang, Zhuhua
    Wei, Xianlong
    Wang, Xuebin
    Guo, Wanlin
    Bando, Yoshio
    Golberg, Dmitri
    NANO LETTERS, 2010, 10 (12) : 5049 - 5055