Regularization Strategy for Multi-organ Nucleus Segmentation with Localizable Features

被引:0
|
作者
Traisuwan, Attasuntorn [1 ]
Limsiroratana, Somchai [1 ]
Phukpattaranont, Pornchai [2 ]
Tandayya, Pichaya [1 ]
机构
[1] Prince Songkla Univ, Fac Engn, Dept Comp Engn, Hat Yai, Songkhla, Thailand
[2] Prince Songkla Univ, Fac Engn, Dept Elect Engn, Hat Yai, Songkhla, Thailand
关键词
Nucleus segmentation; Deep Learning; Regularization Strategy; CutMix; Color Normalization;
D O I
10.1109/JCSSE54890.2022.9836241
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Applying color normalization on H&E images is a famous protocol in digital pathology. Recently, the CutMix technique has a strong ability to generalize the classification models. In this paper, we propose the modified CutMix for segmentation tasks. We apply it to the MoNuSeg dataset. The U-Net with a MobileNet backbone is used for training and inferencing. Moreover, we compare it with the traditional color normalization. The results show that our modified CutMix outperformed color normalization with the +0.179 AJI score. It achieved the IoU score faster and got a higher AP for every IoU threshold.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] A Multi-Organ Nucleus Segmentation Challenge
    Kumar, Neeraj
    Verma, Ruchika
    Anand, Deepak
    Zhou, Yanning
    Onder, Omer Fahri
    Tsougenis, Efstratios
    Chen, Hao
    Heng, Pheng-Ann
    Li, Jiahui
    Hu, Zhiqiang
    Wang, Yunzhi
    Koohbanani, Navid Alemi
    Jahanifar, Mostafa
    Tajeddin, Neda Zamani
    Gooya, Ali
    Rajpoot, Nasir
    Ren, Xuhua
    Zhou, Sihang
    Wang, Qian
    Shen, Dinggang
    Yang, Cheng-Kun
    Weng, Chi-Hung
    Yu, Wei-Hsiang
    Yeh, Chao-Yuan
    Yang, Shuang
    Xu, Shuoyu
    Yeung, Pak Hei
    Sun, Peng
    Mahbod, Amirreza
    Schaefer, Gerald
    Ellinger, Isabella
    Ecker, Rupert
    Smedby, Orjan
    Wang, Chunliang
    Chidester, Benjamin
    That-Vinh Ton
    Minh-Triet Tran
    Ma, Jian
    Minh N Do
    Graham, Simon
    Quoc Dang Vu
    Kwak, Jin Tae
    Gunda, Akshaykumar
    Chunduri, Raviteja
    Hu, Corey
    Zhou, Xiaoyang
    Lotfi, Dariush
    Safdari, Reza
    Kascenas, Antanas
    O'Neil, Alison
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (05) : 1380 - 1391
  • [2] CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
    Yun, Sangdoo
    Han, Dongyoon
    Oh, Seong Joon
    Chun, Sanghyuk
    Choe, Junsuk
    Yoo, Youngjoon
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 6022 - 6031
  • [3] An Overview of Abdominal Multi-organ Segmentation
    Li, Qiang
    Song, Hong
    Chen, Lei
    Meng, Xianqi
    Yang, Jian
    Zhang, Le
    CURRENT BIOINFORMATICS, 2020, 15 (08) : 866 - 877
  • [4] A GLOBAL-LOCAL FEATURES EXCHANGE AND FUSION NETWORK FOR MULTI-ORGAN SEGMENTATION
    Li, Zongyu
    Lin, Yucong
    Ai, Danni
    Yang, Jian
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [5] UNSUPERVISED ENSEMBLE DISTILLATION FOR MULTI-ORGAN SEGMENTATION
    Zhang, Lefei
    Feng, Shixiang
    Wang, Yu
    Wang, Yanfeng
    Zhang, Ya
    Chen, Xin
    Tian, Qi
    2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
  • [6] Federated Multi-Organ Segmentation With Inconsistent Labels
    Xu, Xuanang
    Deng, Hannah H.
    Gateno, Jamie
    Yan, Pingkun
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (10) : 2948 - 2960
  • [7] Multi-Organ Segmentation in Abdominal CT Images
    Okada, Toshiyuki
    Linguraru, Marius George
    Hori, Masatoshi
    Suzuki, Yuki
    Summers, Ronald M.
    Tomiyama, Noriyuki
    Sato, Yoshinobu
    2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 3986 - 3989
  • [8] Alleviating Class Imbalance in Semi-Supervised Multi-Organ Segmentation via Balanced Subclass Regularization
    Feng, Zhenghao
    Wen, Lu
    Yan, Binyu
    Cui, Jiaqi
    Wang, Yan
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 2450 - 2454
  • [9] Construction of Hierarchical Multi-Organ Statistical Atlases and Their Application to Multi-Organ Segmentation from CT Images
    Okada, Toshiyuki
    Yokota, Keita
    Hori, Masatoshi
    Nakamoto, Masahiko
    Nakamura, Hironobu
    Sato, Yoshinobu
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2008, PT I, PROCEEDINGS, 2008, 5241 : 502 - +
  • [10] Class-incremental learning for multi-organ segmentation
    Chen, Junyu
    Frey, Eric
    Du, Yong
    JOURNAL OF NUCLEAR MEDICINE, 2022, 63