A Minimax Regret Approach to Robust Beamforming

被引:0
|
作者
Byun, Jungsub [1 ]
Mutapcic, Almir [1 ]
Kim, Seung-Jean [1 ]
Cioffi, John M. [1 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
关键词
OPTIMIZATION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This article describes a minimax regret approach to robust beamforming with an ellipsoidal uncertainty model for a steering vector, in which the objective is to minimize the worst-case regret over the uncertainty set, where 'worst' means largest. This problem can be solved efficiently by using an iterative method which uses an alternating sequence of optimization and worst-case analysis steps. Each of the two steps amounts to solving a convex optimization problem. The method typically converges to a solution within 5 iterations. The minimax regret beamforming is illustrated with numerical examples in planar random array antennas. The numerical results show that the minimax regret approach is less pessimistic (less conservative) and provides more robust performance than the worst-case SINR maximization (maximin) approach, where 'worst' means smallest.
引用
收藏
页码:1531 / 1536
页数:6
相关论文
共 50 条
  • [1] Robust multiobjective portfolio optimization: A minimax regret approach
    Xidonas, Panos
    Mavrotas, George
    Hassapis, Christis
    Zopounidis, Constantin
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2017, 262 (01) : 299 - 305
  • [2] Minimax Regret Robust Screening with Moment Information
    Wang, Shixin
    Liu, Shaoxuan
    Zhang, Jiawei
    M&SOM-MANUFACTURING & SERVICE OPERATIONS MANAGEMENT, 2024, 26 (03) : 992 - 1012
  • [3] A DISTRIBUTIONAL ROBUST MINIMAX REGRET OPTIMIZATION APPROACH FOR MULTI-OBJECTIVE PORTFOLIO PROBLEMS
    Ou, Xiaoqing
    Song, Dan
    Zhang, Tao
    Chen, Jiawei
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2024, 25 (08) : 1881 - 1897
  • [4] A Multiobjective Minimax Regret Robust VAr Planning Model
    Lopez, Julio
    Pozo, David
    Contreras, Javier
    Sanches Mantovani, Jose Roberto
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2017, 32 (03) : 1761 - 1771
  • [5] Robust Optimization for Transmission Expansion Planning: Minimax Cost vs. Minimax Regret
    Chen, Bokan
    Wang, Jianhui
    Wang, Lizhi
    He, Yanyi
    Wang, Zhaoyu
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2014, 29 (06) : 3069 - 3077
  • [6] Two-Stage Minimax Regret Robust Unit Commitment
    Jiang, Ruiwei
    Wang, Jianhui
    Zhang, Muhong
    Guan, Yongpei
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2013, 28 (03) : 2271 - 2282
  • [7] A Minimax Regret Approach to Decision Making Under Uncertainty
    Mishra, Ashok K.
    Tsionas, Mike G.
    JOURNAL OF AGRICULTURAL ECONOMICS, 2020, 71 (03) : 698 - 718
  • [8] A minimax regret approach for robust multi-objective portfolio selection problems with ellipsoidal uncertainty sets
    Li, Jun
    Wang, Lishuai
    COMPUTERS & INDUSTRIAL ENGINEERING, 2020, 147
  • [9] Minimax Regret Optimisation for Robust Planning in Uncertain Markov Decision Processes
    Rigter, Marc
    Lacerda, Bruno
    Hawes, Nick
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 11930 - 11938
  • [10] Coevolutionary Algorithm for Building Robust Decision Trees under Minimax Regret
    Zychowski, Adam
    Perrault, Andrew
    Mandziuk, Jacek
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 19, 2024, : 21869 - 21877