Evaluation of the mechanical properties of cements with fillers derived from the CO2 reduction of cement plants

被引:10
|
作者
Cosentino, I. [1 ]
Restuccia, L. [1 ]
Ferro, G. A. [1 ]
Liendo, F. [2 ]
Deorsola, F. [2 ]
Bensaid, S. [2 ]
机构
[1] Politecn Torino, Dept Struct Construct & Geotech Engn DISEG, Cso Duca Abruzzi 24, I-10129 Turin, Italy
[2] Politecn Torino, Dept Appl Sci & Technol DISAT, Cso Duca Abruzzi 24, I-10129 Turin, Italy
关键词
carbon dioxide; nanoCaCO(3); calcite; cementitious composites; mechanical properties; flexural strength; compressive strength; fracture energy; CONCRETE; STRENGTH;
D O I
10.1016/j.prostr.2019.08.189
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This work introduces a novel method for the development of CO2 recovery systems derived from the production process of cement in order to obtain CaCO3 nanofiller in cement-based composites. Research was carried out in collaboration between the Department of Applied Science and Technology (DISAT) and the Department of Structural, Construction and Geotechnical Engineering (DISEG) of Politecnico di Torino. The objective of this method was dual. Firstly, it aimed to obtain a precipitated calcium carbonate - nanoCaCO(3) - with a high degree of purity. Secondly, it aimed to optimize the characteristics of these nanoparticles e.g. additional percentages, morphology, particle size distribution or crystal phase, according to their use in cement-based composites. The synthesized nanoCaCO(3) particles were subsequently added into the cementitious composites in different percentages according to the weight of the cement, in order to understand their behaviour within the cement matrix. The mechanical properties were also evaluated, both at 7 and 28 days, through three point bending and compression tests. The results of the mechanical tests showed a promising improvement in strength and toughness. This study is a first step towards developing a CO2 circular economy. (C) 2019 The Authors. Published by Elsevier B.V.
引用
收藏
页码:472 / 483
页数:12
相关论文
共 50 条
  • [1] CO2 reduction from cement industry
    Benghida, D.
    ADVANCED MATERIALS, MECHANICAL AND STRUCTURAL ENGINEERING, 2016, : 127 - 130
  • [2] CO2 Curing on the Mechanical Properties of Portland Cement Concrete
    Wang, Yung-Chih
    Lee, Ming-Gin
    Wang, Wei-Chien
    Kan, Yu-Cheng
    Kao, Shih-Hsuan
    Chang, Hsien-Wen
    BUILDINGS, 2022, 12 (06)
  • [3] CO2 Emissions from Typical Cement Plants in China
    李琛
    崔素萍
    王志宏
    龚先政
    孟宪策
    刘宇
    Journal of Shanghai Jiaotong University(Science), 2012, 17 (03) : 341 - 344
  • [4] Utilization or Sequestration for Captured CO2 from Cement Plants?
    Zaryab, Syed Ali
    d'Amore, Federico
    Colbertaldo, Paolo
    Romano, Matteo C.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2024, 63 (46) : 20287 - 20303
  • [5] Capturing CO2 from cement plants: A priority for reducing CO2 emissions in China
    Zhou, Wenji
    Jiang, Di
    Chen, Dingjiang
    Griffy-Brown, Charla
    Jin, Yong
    Zhu, Bing
    ENERGY, 2016, 106 : 464 - 474
  • [6] Reduction of greenhouse gas emissions by integration of cement plants, power plants, and CO2 capture systems
    Romeo, Luis M.
    Catalina, David
    Lisbona, Pilar
    Lara, Yolanda
    Martinez, Ana
    GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2011, 1 (01): : 72 - 82
  • [7] CO2 Emission Reduction in the Cement Industry
    Mikulcic, Hrvoje
    Vujanovic, Milan
    Markovska, Natasa
    Filkoski, Risto V.
    Ban, Marko
    Duic, Neven
    16TH INTERNATIONAL CONFERENCE ON PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION (PRES'13), 2013, 35 : 703 - 708
  • [8] Chemical Reactions of Portland Cement with Aqueous CO2 and Their Impacts on Cement's Mechanical Properties under Geologic CO2 Sequestration Conditions
    Li, Qingyun
    Lim, Yun Mook
    Flores, Katharine M.
    Kranjc, Kelly
    Jun, Young-Shin
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (10) : 6335 - 6343
  • [9] Effect of CO2 laser radiation on the mechanical properties of Portland cement pastes
    Moreno-Virgen, M. R.
    Soto-Bernal, J. J.
    Ortiz-Lozano, J. A.
    Bonilla-Petriciolet, A.
    Vega-Duran, J. T.
    Gonzalez-Mota, R.
    Pineda-Pinon, J.
    MATERIALES DE CONSTRUCCION, 2011, 61 (301) : 77 - 91
  • [10] CO2 Capture from Cement Plants and Steel Mills Using Membranes
    Baker, Richard W.
    Freeman, Brice
    Kniep, Jay
    Huang, Yu Ivy
    Merkel, Timothy C.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2018, 57 (47) : 15963 - 15970