On the universal envelope of a Jordan triple system of n x n matrices

被引:3
|
作者
Elgendy, Hader A. [1 ]
机构
[1] Damietta Univ, Fac Sci, Dept Math, Dumyat 34517, Egypt
关键词
Jordan triple systems; universal associative envelope; non-commutative Grobner-Shirshov bases; representation theory; ALGEBRAS;
D O I
10.1142/S0219498822501262
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the universal (associative) envelope of the Jordan triple system of all n x n (n >= 2) matrices with the triple product {x, y, z} = xyz zyx over a field of characteristic 0. We use the theory of non-commutative Grobner-Shirshov bases to obtain the monomial basis and the center of the universal envelope. We also determine the decomposition of the universal envelope and show that there exist only five finite-dimensional inequivalent irreducible representations of the Jordan triple system of all n x n matrices.
引用
收藏
页数:19
相关论文
共 50 条