Biased unconstrained non-negative matrix factorization for clustering

被引:8
|
作者
Deng, Ping [1 ]
Zhang, Fan [1 ]
Li, Tianrui [1 ,3 ,4 ]
Wang, Hongjun [1 ]
Horng, Shi-Jinn [2 ]
机构
[1] Southwest Jiaotong Univ, Sch Comp & Artificial Intelligence, Chengdu 611756, Peoples R China
[2] Natl Taiwan Univ Sci & Technol, Dept Comp Sci & Informat Engn, Taipei 106, Taiwan
[3] Southwest Jiaotong Univ, Natl Engn Lab Integrated Transportat Big Data App, Chengdu 611756, Peoples R China
[4] Mfg Ind Chains Collaborat & Informat Support Tech, Chengdu 611756, Peoples R China
基金
美国国家科学基金会;
关键词
Non-negative matrix factorization; Unconstrained regularization; Stochastic gradient descent; Clustering; SIGMOID FUNCTION; ALGORITHMS;
D O I
10.1016/j.knosys.2021.108040
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering remains a challenging research hotspot in data mining. Non-negative matrix factorization (NMF) is an effective technique for clustering, which aims to find the product of two non-negative low-dimensional matrices that approximates the original matrix. Since the matrices must satisfy the non-negative constraints, the Karush-Kuhn-Tucker conditions need to be used to obtain the update rules for the matrices, which limits the choice of update methods. Moreover, this method has no learning rate and the updating process is completely dependent on the data itself. In addition, the two low-dimensional matrices in NMF are randomly initialized, and the clustering performance of the model is reduced. To address these problems, this paper proposes a biased unconstrained non negative matrix factorization (BUNMF) model, which integrates the l2 norm and adds bias. Specifically, BUNMF uses a non-linear activation function to make elements of the matrices to remain non negative, and converts the constrained problem into an unconstrained problem. The matrices are renewed by sequentially updating the matrices' elements using stochastic gradient descent to obtain an update rule with a learning rate. Furthermore, the BUNMF model is constructed by three different activation functions and their iteration update algorithms are given through detailed reasoning. Finally, experimental results on eight public datasets show the effectiveness of the proposed model. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Multi-view clustering guided by unconstrained non-negative matrix factorization
    Deng, Ping
    Li, Tianrui
    Wang, Dexian
    Wang, Hongjun
    Peng, Hong
    Horng, Shi-Jinn
    KNOWLEDGE-BASED SYSTEMS, 2023, 266
  • [2] Speaker Clustering Based on Non-negative Matrix Factorization
    Nishida, Masafumi
    Yamamoto, Seiichi
    12TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2011 (INTERSPEECH 2011), VOLS 1-5, 2011, : 956 - 959
  • [3] Document clustering based on spectral clustering and non-negative matrix factorization
    Bao, Lei
    Tang, Sheng
    Li, Jintao
    Zhang, Yongdong
    Ye, Wei-Ping
    NEW FRONTIERS IN APPLIED ARTIFICIAL INTELLIGENCE, 2008, 5027 : 149 - +
  • [4] Non-Negative Matrix Factorization With Dual Constraints for Image Clustering
    Yang, Zuyuan
    Zhang, Yu
    Xiang, Yong
    Yan, Wei
    Xie, Shengli
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2020, 50 (07): : 2524 - 2533
  • [5] Non-negative matrix factorization by maximizing correntropy for cancer clustering
    Wang, Jim Jing-Yan
    Wang, Xiaolei
    Gao, Xin
    BMC BIOINFORMATICS, 2013, 14
  • [6] Ensemble Non-negative Matrix Factorization for Clustering Biomedical Documents
    Zhu, Shanfeng
    Yuan, Wei
    Wang, Fei
    OPTIMIZATION AND SYSTEMS BIOLOGY, PROCEEDINGS, 2008, 9 : 358 - 364
  • [7] Document Clustering with Cluster Refinement and Non-negative Matrix Factorization
    Park, Sun
    An, Dong Un
    Char, ByungRea
    Kim, Chul-Won
    NEURAL INFORMATION PROCESSING, PT 2, PROCEEDINGS, 2009, 5864 : 281 - +
  • [8] Optimal Bayesian clustering using non-negative matrix factorization
    Wang, Ketong
    Porter, Michael D.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 128 : 395 - 411
  • [9] Hybrid Online Non-negative Matrix Factorization for Clustering of Documents
    Jadhao, Vinod
    Murty, M. Narasimha
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT I, 2012, 7663 : 516 - 523
  • [10] Graph Regularized Sparse Non-Negative Matrix Factorization for Clustering
    Deng, Ping
    Li, Tianrui
    Wang, Hongjun
    Wang, Dexian
    Horng, Shi-Jinn
    Liu, Rui
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2023, 10 (03) : 910 - 921