Marginal zero-inflated regression models for count data

被引:12
|
作者
Martin, Jacob [1 ]
Hall, Daniel B. [1 ]
机构
[1] Univ Georgia, Dept Stat, Athens, GA 30602 USA
关键词
Exponential dispersion family; generalized linear models; zero inflation; marginal models; EM algorithm; BINOMIAL REGRESSION; POISSON REGRESSION;
D O I
10.1080/02664763.2016.1225018
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Data sets with excess zeroes are frequently analyzed in many disciplines. A common framework used to analyze such data is the zero-inflated (ZI) regression model. It mixes a degenerate distribution with point mass at zero with a non-degenerate distribution. The estimates from ZI models quantify the effects of covariates on the means of latent random variables, which are often not the quantities of primary interest. Recently, marginal zero-inflated Poisson (MZIP; Long etal. [A marginalized zero-inflated Poisson regression model with overall exposure effects. Stat. Med. 33 (2014), pp.5151-5165]) and negative binomial (MZINB; Preisser et al., 2016) models have been introduced that model the mean response directly. These models yield covariate effects that have simple interpretations that are, for many applications, more appealing than those available from ZI regression. This paper outlines a general framework for marginal zero-inflated models where the latent distribution is a member of the exponential dispersion family, focusing on common distributions for count data. In particular, our discussion includes the marginal zero-inflated binomial (MZIB) model, which has not been discussed previously. The details of maximum likelihood estimation via the EM algorithm are presented and the properties of the estimators as well as Wald and likelihood ratio-based inference are examined via simulation. Two examples presented illustrate the advantages of MZIP, MZINB, and MZIB models for practical data analysis.
引用
收藏
页码:1807 / 1826
页数:20
相关论文
共 50 条
  • [1] Marginal Mean Models for Zero-Inflated Count Data
    Todem, David
    Kim, KyungMann
    Hsu, Wei-Wen
    BIOMETRICS, 2016, 72 (03) : 986 - 994
  • [2] Zero-inflated Bell regression models for count data
    Lemonte, Artur J.
    Moreno-Arenas, German
    Castellares, Fredy
    JOURNAL OF APPLIED STATISTICS, 2020, 47 (02) : 265 - 286
  • [3] The analysis of zero-inflated count data: Beyond zero-inflated Poisson regression.
    Loeys, Tom
    Moerkerke, Beatrijs
    De Smet, Olivia
    Buysse, Ann
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2012, 65 (01): : 163 - 180
  • [4] Zero-Inflated Poisson Regression Models with Right Censored Count Data
    Saffari, Seyed Ehsan
    Adnan, Robiah
    MATEMATIKA, 2011, 27 (01) : 21 - 29
  • [5] Marginalized Zero-Inflated Bell Regression Models for Overdispersed Count Data
    Amani, Kouakou Mathias
    Kouakou, Konan Jean Geoffroy
    Hili, Ouagnina
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2025, 19 (02)
  • [6] Ordinal regression models for zero-inflated and/or over-dispersed count data
    Valle, Denis
    Ben Toh, Kok
    Laporta, Gabriel Zorello
    Zhao, Qing
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [7] Zero-inflated models for regression analysis of count data: a study of growth and development
    Bin Cheung, Y
    STATISTICS IN MEDICINE, 2002, 21 (10) : 1461 - 1469
  • [8] Two-part regression models for longitudinal zero-inflated count data
    Alfo, Marco
    Maruotti, Antonello
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2010, 38 (02): : 197 - 216
  • [9] Ordinal regression models for zero-inflated and/or over-dispersed count data
    Denis Valle
    Kok Ben Toh
    Gabriel Zorello Laporta
    Qing Zhao
    Scientific Reports, 9
  • [10] Zero-inflated count regression models with applications to some examples
    Lawal, Bayo H.
    QUALITY & QUANTITY, 2012, 46 (01) : 19 - 38