On Sobolev extension domains in Rn

被引:32
|
作者
Shvartsman, Pavel [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词
Sobolev space; Extension; Domain; Inner metric; WEIGHTED NORM INEQUALITIES; LIPSCHITZ CLASSES; REGULAR SUBSETS; MEASURE DENSITY; EXTENDABILITY; OPERATORS; SPACES;
D O I
10.1016/j.jfa.2010.01.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe a class of Sobolev W-p(k)-extension domains Omega subset of R-n determined by a certain inner subhyperbolic metric in Omega. This enables us to characterize finitely connected Sobolev W-p(1)-extension domains in R-2 for each p > 2. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2205 / 2245
页数:41
相关论文
共 50 条
  • [1] Morrey–Sobolev Extension Domains
    Pekka Koskela
    Yi Ru-Ya Zhang
    Yuan Zhou
    The Journal of Geometric Analysis, 2017, 27 : 1413 - 1434
  • [2] UNIFORM AND SOBOLEV EXTENSION DOMAINS
    HERRON, DA
    KOSKELA, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 114 (02) : 483 - 489
  • [3] Traces and Sobolev extension domains
    Harjulehto, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (08) : 2373 - 2382
  • [4] Morrey-Sobolev Extension Domains
    Koskela, Pekka
    Zhang, Yi Ru-Ya
    Zhou, Yuan
    JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (02) : 1413 - 1434
  • [5] TRACE RESULT FOR SOBOLEV EXTENSION DOMAINS
    Ait-Akli, Djamel
    Merakeb, Abdelkader
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2021, 19 (04): : 503 - 511
  • [6] Hardy!Sobolev spaces on strongly Lipschitz domains of Rn
    Auscher, P
    Russ, E
    Tchamitchian, P
    JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 218 (01) : 54 - 109
  • [7] SOBOLEV SPACES AND ELLIPTIC THEORY ON UNBOUNDED DOMAINS IN Rn
    Harrington, Phillip S.
    Raich, Andrew
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2014, 19 (7-8) : 635 - 692
  • [8] ON TRACES OF SOBOLEV FUNCTIONS ON THE BOUNDARY OF EXTENSION DOMAINS
    Biegert, Markus
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (12) : 4169 - 4176
  • [9] A geometric characterization of planar Sobolev extension domains
    Koskela, Pekka
    Rajala, Tapio
    Zhang, Yi Ru-Ya
    SCIENCE CHINA-MATHEMATICS, 2025,
  • [10] On planar Sobolev Lpm-extension domains
    Shvartsman, Pavel
    Zobin, Nahum
    ADVANCES IN MATHEMATICS, 2016, 287 : 237 - 346