Maximally tangent complex curves for germs of finite type C∞ pseudoconvex domains in C3

被引:0
|
作者
Fornaess, John Erik [1 ]
Stensones, Berit [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
REAL HYPERSURFACES; CONTACT;
D O I
10.1007/s00208-009-0462-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we discuss D'Angelo finite type pseudoconvex domains Omega in C-3. We are interested in complex curves tangent to higher order. Our main result is that there are only finitely many curves of maximal type. Maximal type has to be taken in a micro-local sense since the maximal type can be different in different directions. And of course to get finiteness we have to ignore higher order irrelevant terms which can be added without restriction. In the process of describing such a curve we find a singular change of coordinates which reduces the curve to a complex line.
引用
收藏
页码:979 / 991
页数:13
相关论文
共 50 条
  • [1] Infinite type germs of real analytic pseudoconvex domains in C3
    Fornaess, John Erik
    Stensones, Berit
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2012, 57 (06) : 705 - 717
  • [2] Hankel operators on pseudoconvex domains of finite type in C2
    Symesak, F
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1998, 50 (03): : 658 - 672
  • [3] Gromov hyperbolicity of pseudoconvex finite type domains in C2
    Fiacchi, Matteo
    MATHEMATISCHE ANNALEN, 2022, 382 (1-2) : 37 - 68
  • [4] Finite A-determinacy of generic homogeneous map germs in C3
    Farnik, Michal
    Jelonek, Zbigniew
    Soares Ruas, Maria Aparecida
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2021, 73 (01) : 211 - 220
  • [5] Polar multiplicities and equisingularity of map germs from C3 to C3
    Pérez, VHJ
    HOUSTON JOURNAL OF MATHEMATICS, 2003, 29 (04): : 901 - 924
  • [6] Double point curves for corank 2 map germs from C2 to C3
    Marar, W. L.
    Nuno-Ballesteros, J. J.
    Penafort-Sanchis, G.
    TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (02) : 526 - 536
  • [7] The Gehring-Hayman type theorem on pseudoconvex domains of finite type in C2
    Li, Haichou
    Pu, Xingsi
    Wang, Hongyu
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (06) : 2785 - 2799
  • [8] The Kobayashi Metric and Gromov Hyperbolicity on Pseudoconvex Domains of Finite Type in C2
    Li, Haichou
    Pu, Xingsi
    Wang, Lang
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (01)
  • [9] C2 DOMAINS, PSEUDOCONVEX DOMAINS AND FINITE DOMAINS WITH A NONCOMPACT GROUP OF AUTOMORPHISMS
    BERTELOOT, F
    COEURE, G
    ANNALES DE L INSTITUT FOURIER, 1991, 41 (01) : 77 - 86
  • [10] A NOTE ON THE GEOMETRY OF PSEUDOCONVEX DOMAINS OF FINITE TYPE IN ALMOST COMPLEX MANIFOLDS
    Bertrand, Florian
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (05) : 1633 - 1641