Directed Atom-by-Atom Assembly of Dopants in Silicon

被引:54
|
作者
Hudak, Bethany M. [1 ,2 ]
Song, Jiaming [1 ,6 ]
Sims, Hunter [1 ,3 ]
Troparevsky, M. Claudia [1 ]
Humble, Travis S. [4 ]
Pantelides, Sokrates T. [1 ,3 ]
Snijders, Paul C. [1 ,5 ]
Lupini, Andrew R. [1 ,2 ]
机构
[1] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
[2] Oak Ridge Natl Lab, Inst Funct Imaging Mat, Oak Ridge, TN 37831 USA
[3] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA
[4] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA
[5] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
[6] Northwest Univ, Sch Phys, Xian 710127, Shaanxi, Peoples R China
关键词
atomic positioning single-atom manipulation; scanning transmission electron microscopy (STEM); dopants; bismuth in silicon; quantum materials; quantum computing; AUGMENTED-WAVE METHOD; RADIATION-DAMAGE; SINGLE ATOMS; TRANSISTORS; SPIN; SEMICONDUCTORS; MANIPULATION; GERMANIUM; DIFFUSION; IMPURITY;
D O I
10.1021/acsnano.8b02001
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The ability to controllably position single atoms inside materials is key for the ultimate fabrication of devices with functionalities governed by atomic-scale properties. Single bismuth dopant atoms in silicon provide an ideal case study in view of proposals for single-dopant quantum bits. However, bismuth is the least soluble pnictogen in silicon, meaning that the dopant atoms tend to migrate out of position during sample growth. Here, we demonstrate epitaxial growth of thin silicon films doped with bismuth. We use atomic-resolution aberration-corrected imaging to view the as-grown dopant distribution and then to controllably position single dopants inside the film. Atomic-scale quantum mechanical calculations corroborate the experimental findings. These results indicate that the scanning transmission electron. microscope is of particular interest for assembling functional materials atom-by-atom because it offers both real-time monitoring and atom manipulation. We envision electron-beam manipulation of atoms inside materials as an achievable route to controllable assembly of structures of individual dopants.
引用
收藏
页码:5873 / 5879
页数:7
相关论文
共 50 条
  • [1] Atom-by-atom assembly
    Hla, Saw Wai
    REPORTS ON PROGRESS IN PHYSICS, 2014, 77 (05)
  • [2] Enhanced atom-by-atom assembly of arbitrary tweezer arrays
    Schymik, Kai-Niklas
    Lienhard, Vincent
    Barredo, Daniel
    Scholl, Pascal
    Williams, Hannah
    Browaeys, Antoine
    Lahaye, Thierry
    PHYSICAL REVIEW A, 2020, 102 (06)
  • [3] Atom-by-Atom Construction of a Cyclic Artificial Molecule in Silicon
    Wyrick, Jonathan
    Wang, Xiqiao
    Namboodiri, Pradeep
    Schmucker, Scott W.
    Kashid, Ranjit V.
    Silver, Richard M.
    NANO LETTERS, 2018, 18 (12) : 7502 - 7508
  • [5] Atom-by-Atom Direct Writing
    Dyck, Ondrej
    Lupini, Andrew R.
    Jesse, Stephen
    NANO LETTERS, 2023, 23 (06) : 2339 - 2346
  • [6] Atom-by-atom assembly of defect-free one-dimensional cold atom arrays
    Endres, Manuel
    Bernien, Hannes
    Keesling, Alexander
    Levine, Harry
    Anschuetz, Eric R.
    Krajenbrink, Alexandre
    Senko, Crystal
    Vuletic, Vladan
    Greiner, Markus
    Lukin, Mikhail D.
    SCIENCE, 2016, 354 (6315) : 1024 - 1027
  • [7] Mechanical gate control for atom-by-atom cluster assembly with scanning probe microscopy
    Sugimoto, Yoshiaki
    Yurtsever, Ayhan
    Hirayama, Naoki
    Abe, Masayuki
    Morita, Seizo
    NATURE COMMUNICATIONS, 2014, 5
  • [8] Mechanical gate control for atom-by-atom cluster assembly with scanning probe microscopy
    Yoshiaki Sugimoto
    Ayhan Yurtsever
    Naoki Hirayama
    Masayuki Abe
    Seizo Morita
    Nature Communications, 5
  • [9] Atom-by-atom spectroscopy at graphene edge
    Suenaga, Kazu
    Koshino, Masanori
    NATURE, 2010, 468 (7327) : 1088 - 1090
  • [10] Atom-by-atom fabrication with electron beams
    Ondrej Dyck
    Maxim Ziatdinov
    David B. Lingerfelt
    Raymond R. Unocic
    Bethany M. Hudak
    Andrew R. Lupini
    Stephen Jesse
    Sergei V. Kalinin
    Nature Reviews Materials, 2019, 4 : 497 - 507