Intrinsic universality of a 1-dimensional reversible cellular automaton

被引:0
|
作者
Durand-Lose, JO [1 ]
机构
[1] Univ Bordeaux 1, LABRI, F-33405 Talence, France
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper deals with simulation and reversibility in the context of Cellular Automata (CA). We recall the definitions of CA and of the Block (BCA) and Partitioned (PCA) subclasses. We note that PCA simulate CA. A simulation of reversible CA (R-CA) with reversible PCA is built contradicting the intuition of known undecidability results. We build a 1-R-CA which is intrinsic universal, i.e., able to simulate any 1-R-CA.
引用
收藏
页码:439 / 450
页数:12
相关论文
共 50 条
  • [1] UNIVERSALITY CLASS OF A ONE-DIMENSIONAL CELLULAR AUTOMATON
    JENSEN, I
    PHYSICAL REVIEW A, 1991, 43 (06): : 3187 - 3189
  • [2] UNIVERSALITY OF 1-DIMENSIONAL REACTION MODELS
    Inui, N.
    Tretyakov, A. Y.
    Takayasu, H.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 1993, 1 (03) : 480 - 490
  • [3] Demonstration of the universality of a new cellular automaton
    Sapin, E.
    Bailleux, O.
    Chabrier, J. -J.
    Collet, P.
    INTERNATIONAL JOURNAL OF UNCONVENTIONAL COMPUTING, 2007, 3 (02) : 79 - 103
  • [4] 1-Dimensional intrinsic persistence of geodesic spaces
    Virk, Ziga
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2020, 12 (01) : 169 - 207
  • [5] The intrinsic universality problem of one-dimensional cellular automata
    Ollinger, N
    STACS 2003, PROCEEDINGS, 2003, 2607 : 632 - 641
  • [6] Approximations of 1-dimensional intrinsic persistence of geodesic spaces and their stability
    Žiga Virk
    Revista Matemática Complutense, 2019, 32 : 195 - 213
  • [7] Universality of reversible hexagonal cellular automata
    Morita, Kenichi
    Margenstern, Maurice
    Imai, Katsunobu
    Theoretical Informatics and Applications, 1999, 33 (06): : 535 - 550
  • [8] Universality of reversible hexagonal cellular automata
    Morita, K
    Margenstern, N
    Imai, K
    RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1999, 33 (06): : 535 - 550
  • [9] Approximations of 1-dimensional intrinsic persistence of geodesic spaces and their stability
    Virk, Ziga
    REVISTA MATEMATICA COMPLUTENSE, 2019, 32 (01): : 195 - 213
  • [10] Universality of One-Dimensional Reversible and Number-Conserving Cellular Automata
    Morita, Kenichi
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2012, (90): : 142 - 150