Entire coloring of plane graph with maximum degree eleven

被引:1
|
作者
Dong, Wei [1 ,2 ]
Lin, Wensong [1 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 211189, Jiangsu, Peoples R China
[2] Nanjing Xiaozhuang Univ, Sch Math & Informat Technol, Nanjing 211171, Jiangsu, Peoples R China
基金
中国博士后科学基金;
关键词
Entire coloring; Plane graph; Maximum degree;
D O I
10.1016/j.disc.2014.07.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A plane graph is called entirely k-colorable if for each x is an element of V (G) boolean OR E(G) boolean OR F(G), we can use k colors to assign each element x a color such that any two elements that are adjacent or incident receive distinct colors. In this paper, we prove that if G is a plane graph with Delta = 11, then G is entirely (Delta+2)-colorable, which provides a positive answer to a problem posed by Borodin (Problem 5.2 in Borodin (2013)). (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:46 / 56
页数:11
相关论文
共 50 条
  • [1] TOTALLY COLORING A GRAPH WITH MAXIMUM DEGREE 4
    JONES, KF
    RYAN, J
    ARS COMBINATORIA, 1991, 31 : 277 - 285
  • [2] EVERY PLANE GRAPH OF MAXIMUM DEGREE 8 HAS AN EDGE-FACE 9-COLORING
    Kang, Ross J.
    Sereni, Jean-Sebastien
    Stehlik, Matej
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2011, 25 (02) : 514 - 533
  • [3] TOTAL-COLORING OF PLANE GRAPHS WITH MAXIMUM DEGREE NINE
    Kowalik, Lukasz
    Sereni, Jean-Sebastien
    Skrekovski, Riste
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (04) : 1462 - 1479
  • [4] Edge-Face Coloring of Plane Graphs with Maximum Degree Nine
    Sereni, Jean-Sebastien
    Stehlik, Matej
    JOURNAL OF GRAPH THEORY, 2011, 66 (04) : 332 - 346
  • [5] EQUITABLE COLORING AND THE MAXIMUM DEGREE
    CHEN, BL
    LIH, KW
    WU, PL
    EUROPEAN JOURNAL OF COMBINATORICS, 1994, 15 (05) : 443 - 447
  • [6] On Maximum Differential Graph Coloring
    Hu, Yifana
    Kobourov, Stephen
    Veeramoni, Sank
    GRAPH DRAWING, 2011, 6502 : 274 - +
  • [7] Degree tolerant coloring of graph
    Kok, Johan
    ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2020, 12 (02) : 217 - 231
  • [8] Cyclic 9-coloring of plane graphs with maximum face degree six
    Wan, Min
    Xu, Baogang
    ARS COMBINATORIA, 2015, 121 : 413 - 420
  • [9] Maximum average degree and relaxed coloring
    Kopreski, Michael
    Yu, Gexin
    DISCRETE MATHEMATICS, 2017, 340 (10) : 2528 - 2530
  • [10] A sufficient condition for a plane graph with maximum degree 6 to be class 1
    Wang, Yingqian
    Xu, Lingji
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (1-2) : 307 - 310