Parsimony doesn't mean simplicity: Genetic Programming for inductive inference on noisy data

被引:0
|
作者
De Falco, Ivanoe [1 ]
Della Cioppa, Antonio [2 ]
Maisto, Domenico [3 ]
Scafuri, Umberto [1 ]
Tarantino, Ernesto [1 ]
机构
[1] CNR, Inst High Performance Comp & Networking, ICAR CNR, Via P Castellino 111, I-80131 Naples, Italy
[2] Univ Salerno, DIIIE, Natural Comp Lab, I-84084 Salerno, Italy
[3] Univ Modena & Reggio Emilia, I-41100 Modena, Italy
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A Genetic Programming algorithm based on Solomonoff's probabilistic induction is designed and used to face an Inductive Inference task, i.e., symbolic regression. To this aim, some test functions are dressed with increasing levels of noise and the algorithm is employed to denoise the resulting function and recover the starting functions. Then, the algorithm is compared against a classical parsimony-based GP. The results shows the superiority of the Solomonoff-based approach.
引用
收藏
页码:351 / +
页数:3
相关论文
共 13 条
  • [1] Genetic programming for inductive inference of chaotic series
    de Falco, I
    della Cioppa, A
    Passaro, A
    Tarantino, E
    FUZZY LOGIC AND APPLICATIONS, 2006, 3849 : 156 - 163
  • [2] Genetic programming model for forecast of short and noisy data
    Sivapragasam, C.
    Vincent, P.
    Vasudevan, G.
    HYDROLOGICAL PROCESSES, 2007, 21 (02) : 266 - 272
  • [3] Treating noisy data sets with relaxed genetic programming
    Da Costa, Luis
    Landry, Jacques-Andre
    Levasseur, Yan
    ARTIFICIAL EVOLUTION, 2008, 4926 : 1 - 12
  • [4] Performance of genetic programming to extract the trend in noisy data series
    Borrelli, A.
    De Falco, I.
    Della Cioppa, A.
    Nicodemi, M.
    Trautteur, G.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 370 (01) : 104 - 108
  • [5] Symbolic regression on noisy data with genetic and gene expression programming
    Bautu, E
    Bautu, A
    Luchian, H
    Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Proceedings, 2005, : 321 - 324
  • [6] How Noisy Data Affects Geometric Semantic Genetic Programming
    Miranda, Luis F.
    Oliveira, Luiz Otavio V. B.
    Martins, Joao Francisco B. S.
    Pappa, Gisele L.
    PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'17), 2017, : 985 - 992
  • [7] Inference of noisy nonlinear differential equation models for gene regulatory networks using genetic programming and Kalman filtering
    Qian, Lijun
    Wang, Haixin
    Dougherty, Edward R.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (07) : 3327 - 3339
  • [8] A rare cause of osteomyelitis with a rare genetic mutation: when Mycobacterium doesn't only mean tuberculosis
    Remaschi, Giulia
    Venturini, Elisabetta
    Romano, Francesca
    Perrone, Anna
    Montagnani, Carlotta
    Azzari, Chiara
    Chiappini, Elena
    de Martino, Maurizio
    Galli, Luisa
    INTERNATIONAL JOURNAL OF TUBERCULOSIS AND LUNG DISEASE, 2015, 19 (08) : 999 - 1000
  • [9] Inductive data mining based on genetic programming: Automatic generation of decision trees from data for process historical data analysis
    Ma, Chao Y.
    Wang, Xue Z.
    COMPUTERS & CHEMICAL ENGINEERING, 2009, 33 (10) : 1602 - 1616
  • [10] Physics-informed genetic programming for discovery of partial differential equations from scarce and noisy data
    Cohen, Benjamin G.
    Beykal, Burcu
    Bollas, George M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 514