Topology-Parameter Hybrid Optimization of Skewed Permanent Magnet Motor

被引:0
|
作者
Hayashi, Shogo [1 ]
Kubota, Yoshihisa [2 ]
Soma, Shingo [2 ]
Oya, Satoyoshi [2 ]
Igarashi, Hajime [1 ]
机构
[1] Hokkaido Univ, Grad Sch Informat Sci & Technol, Sapporo, Hokkaido 0600814, Japan
[2] Honda Res & Dev Co Ltd, Automobile R&D Ctr, Haga, Tochigi 3213393, Japan
关键词
Permanent magnet synchronous motor (PMSM); step-skewed rotor; Topology optimization; Robustness;
D O I
10.1109/CEFC55061.2022.9940801
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a topology-parameter hybrid optimization of a permanent magnet motor with a step-skewed rotor. This optimization simultaneously performs the topology optimization of the core shape and parameter optimization of the skew angle. The simultaneous optimization is shown to provide the optimized motors superior over those obtained by the sequential optimization. Moreover, the optimized shape is shown robust with respect to the variation in the skew angle.
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Topology-Parameter Hybrid Optimization of Skewed Permanent Magnet Motor
    Hayashi, Shogo
    Kubota, Yoshihisa
    Soma, Shingo
    Oya, Satoyoshi
    Igarashi, Hajime
    IEEE TRANSACTIONS ON MAGNETICS, 2023, 59 (05)
  • [2] Parameter Optimization of Hybrid Excitation Permanent Magnet Synchronous Motor
    Xia, Yonghong
    Jiang, Huasheng
    Yi, Xuanxing
    Wen, Zijian
    Chen, Ying
    2018 21ST INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS), 2018, : 398 - 401
  • [3] Parameter-topology hybrid optimization of electric motor with multiple permanent magnets
    Hayashi, Shogo
    Igarashi, Hajime
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2023, 71 : S245 - S255
  • [4] Novel Hybrid 3-D Shape Optimization Method Combining Parameter and Topology Optimizations: Application to Permanent Magnet Motor
    Otomo, Yoshitsugu
    Abe, Takashi
    2024 IEEE 21ST BIENNIAL CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION, CEFC 2024, 2024,
  • [5] Multiphysics Deep Learning for Topology Optimization of Permanent Magnet Motor
    Mikami, Ryosuke
    Sato, Hayaho
    Kujimichi, Tamaki
    Igarashi, Hajime
    2024 IEEE 21ST BIENNIAL CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION, CEFC 2024, 2024,
  • [6] Novel Hybridization of Parameter and Topology Optimizations: Application to Permanent Magnet Motor
    Hiruma, Shingo
    Ohtani, Makoto
    Soma, Shingo
    Kubota, Yoshihisa
    Igarashi, Hajime
    IEEE TRANSACTIONS ON MAGNETICS, 2021, 57 (07)
  • [7] Topology Optimization of a Surface Permanent Magnet Motor With High Torque Density
    Hayashi, Shogo
    Yatsurugi, Manabu
    Kubota, Yoshihisa
    Soma, Shingo
    Igarashi, Hajime
    IEEE TRANSACTIONS ON MAGNETICS, 2024, 60 (03)
  • [8] A Manufacturing Oriented Topology Optimization Methodology for Permanent Magnet Synchronous Motor
    Xia, Meng
    Li, Jing
    Yang, Shiyou
    2024 IEEE 21ST BIENNIAL CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION, CEFC 2024, 2024,
  • [9] Topology Optimization of Permanent Magnet Synchronous Motor Considering the Control System
    Hayashi, Shogo
    Kubota, Yoshihisa
    Soma, Shingo
    Ohtani, Makoto
    Igarashi, Hajime
    IEEE TRANSACTIONS ON MAGNETICS, 2022, 58 (09)
  • [10] Optimization of the synchronous motor with hybrid permanent magnet excitation system
    Knypinski, Lukasz
    Nowak, Lech
    Demenko, Andrzej
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2015, 34 (02) : 448 - 455