One-step Taylor-Galerkin methods for convection-diffusion problems

被引:11
|
作者
Roig, Bernardino [1 ]
机构
[1] Univ Politecn Valencia, Dept Matemat Aplicada, Valencia 46730, Spain
关键词
Taylor-Galerkin; convection-diffusion; time-stepping schemes; finite elements; COMPUTER;
D O I
10.1016/j.cam.2006.04.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Third and fourth order Taylor-Galerkin schemes have shown to be efficient. finite element schemes for the numerical simulation of time-dependent convective transport problems. By contrast, the application of higher-order Taylor-Galerkin schemes to mixed problems describing transient transport by both convection and diffusion appears to be much more difficult. In this paper we develop two new Taylor-Galerkin schemes maintaining the accuracy properties and improving the stability restrictions in convection-diffusion. We also present an efficient algorithm for solving the resulting system of the finite element method. Finally we present two numerical simulations that confirm the properties of the methods. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:95 / 101
页数:7
相关论文
共 50 条
  • [1] TAYLOR-GALERKIN-BASED SPECTRAL ELEMENT METHODS FOR CONVECTION-DIFFUSION PROBLEMS
    TIMMERMANS, LJP
    VANDEVOSSE, FN
    MINEV, PD
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1994, 18 (09) : 853 - 870
  • [2] Multilayer Taylor-Galerkin schemes for convection problems
    Smolianski, A
    Kuzmin, D
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1999, 46 (05) : 659 - 670
  • [3] Superconvergence of Discontinuous Galerkin Methods for Convection-Diffusion Problems
    Zuozheng Zhang
    Ziqing Xie
    Zhimin Zhang
    Journal of Scientific Computing, 2009, 41 : 70 - 93
  • [4] Superconvergence of Discontinuous Galerkin Methods for Convection-Diffusion Problems
    Zhang, Zuozheng
    Xie, Ziqing
    Zhang, Zhimin
    JOURNAL OF SCIENTIFIC COMPUTING, 2009, 41 (01) : 70 - 93
  • [5] Adaptive discontinuous Galerkin methods for nonstationary convection-diffusion problems
    Cangiani, Andrea
    Georgoulis, Emmanuil H.
    Metcalfe, Stephen
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (04) : 1578 - 1597
  • [6] COMPACT AND STABLE DISCONTINUOUS GALERKIN METHODS FOR CONVECTION-DIFFUSION PROBLEMS
    Brdar, S.
    Dedner, A.
    Kloefkorn, R.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (01): : A263 - A282
  • [7] Adaptive Lagrange-Galerkin methods for unsteady convection-diffusion problems
    Houston, P
    Süli, E
    MATHEMATICS OF COMPUTATION, 2001, 70 (233) : 77 - 106
  • [8] A STABILIZED GALERKIN METHOD FOR CONVECTION-DIFFUSION PROBLEMS
    DEGROEN, PPN
    VANVELDHUIZEN, M
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1989, 10 (02): : 274 - 297
  • [9] Superconvergence of the numerical traces of discontinuous Galerkin and hybridized methods for convection-diffusion problems in one space dimension
    Celiker, Fatih
    Cockburn, Bernardo
    MATHEMATICS OF COMPUTATION, 2006, 76 (257) : 67 - 96
  • [10] Discontinuous Galerkin schemes for nonstationary convection-diffusion problems
    Dautov, R. Z.
    Fedotov, E. M.
    11TH INTERNATIONAL CONFERENCE ON MESH METHODS FOR BOUNDRY-VALUE PROBLEMS AND APPLICATIONS, 2016, 158