DOUBLE VERTEX-EDGE DOMINATION IN TREES

被引:1
|
作者
Chen, Xue-Gang [1 ]
Sohn, Moo Young [2 ]
机构
[1] North China Elect Power Univ, Dept Math, Beijing 102206, Peoples R China
[2] Changwon Natl Univ, Dept Math, Chang Won 51140, South Korea
基金
新加坡国家研究基金会;
关键词
Double vertex-edge dominating set; trees;
D O I
10.4134/BKMS.b210171
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A vertex v of a graph G = (V, E) is said to ye-dominate every edge incident to v, as well as every edge adjacent to these incident edges. A set S subset of V is called a double vertex-edge dominating set if every edge of E is ye-dominated by at least two vertices of S. The minimum cardinality of a double vertex-edge dominating set of G is the double vertex-edge domination number gamma(dve) (G). In this paper, we provide an upper bound on the double vertex-edge domination number of trees in terms of the order n, the number of leaves and support vertices, and we characterize the trees attaining the upper bound. Finally, we design a polynomial time algorithm for computing the value of gamma(d)(ve)(T) for any trees. This gives an answer of an open problem posed in [4].
引用
收藏
页码:167 / 177
页数:11
相关论文
共 50 条
  • [1] TOTAL VERTEX-EDGE DOMINATION IN TREES
    Ahangar, H. Abdollahzadeh
    Chellali, M.
    Sheikholeslami, S. M.
    Soroudi, M.
    Volkmann, L.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2021, 90 (02): : 127 - 143
  • [2] Results on vertex-edge and independent vertex-edge domination
    Subhabrata Paul
    Keshav Ranjan
    Journal of Combinatorial Optimization, 2022, 44 : 303 - 330
  • [3] Vertex-Edge Domination
    Lewis, Jason
    Hedetniemi, Stephen T.
    Haynes, Teresa W.
    Fricke, Gerd H.
    UTILITAS MATHEMATICA, 2010, 81 : 193 - 213
  • [4] Results on vertex-edge and independent vertex-edge domination
    Paul, Subhabrata
    Ranjan, Keshav
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (01) : 303 - 330
  • [5] Double vertex-edge domination in graphs: complexity and algorithms
    Naresh Kumar, H.
    Pradhan, D.
    Venkatakrishnan, Y. B.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2021, 66 (1-2) : 245 - 262
  • [6] Vertex-edge domination in graphs
    Boutrig, Razika
    Chellali, Mustapha
    Haynes, Teresa W.
    Hedetniemi, Stephen T.
    AEQUATIONES MATHEMATICAE, 2016, 90 (02) : 355 - 366
  • [7] Vertex-edge domination in graphs
    Paweł Żyliński
    Aequationes mathematicae, 2019, 93 : 735 - 742
  • [8] Double vertex-edge domination in graphs: complexity and algorithms
    H. Naresh Kumar
    D. Pradhan
    Y. B. Venkatakrishnan
    Journal of Applied Mathematics and Computing, 2021, 66 : 245 - 262
  • [9] VERTEX-EDGE ROMAN DOMINATION
    Kumar, H. Naresh
    Venkatakrishnan, Y. B.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2021, 45 (05): : 685 - 698
  • [10] Total vertex-edge domination
    Boutrig, Razika
    Chellali, Mustapha
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (09) : 1820 - 1828