First order probabilistic logic

被引:3
|
作者
Jaumard, Brigitte [1 ]
Fortin, Alexandre [2 ]
Shahriar, Istiaque [1 ]
Sultana, Razia [1 ]
机构
[1] Concordia Univ, CIISE Inst, Montreal, PQ H3G 1M8, Canada
[2] Ecole Polytech Montreal, Dept Elect Engn, Montreal, PQ H3C 3A7, Canada
来源
NAFIPS 2006 - 2006 ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY, VOLS 1 AND 2 | 2006年
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1109/NAFIPS.2006.365433
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nilsson revisited in 1986 the early work of Boole (1854) and of Hailperin (1976) on logic and probability, i.e., a generalization of logic in which the truth of sentences are probability values. This led to state precisely several basic problems of artificial intelligence, a paradigm of which is probabilistic satisfiability (PSAT): determine, given a set of clauses (i.e., propositional sentences) and probabilities that these clauses are true, whether these probabilities are consistent. We consider here the extension Of PSAT to first order logic, or FOPSAT for short. We propose a delayed column generation algorithm to establish consistency and entail new probability values for a probabilistic satisfiability system to remain consistent when adding a new logical sentence. The progress of the algorithm is illustrated on an example.
引用
收藏
页码:341 / +
页数:3
相关论文
共 50 条
  • [1] Fuzzy unification and first order probabilistic logic
    Piastra, M
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2002, 17 (09) : 835 - 852
  • [2] Monodic Fragments of Probabilistic First-Order Logic
    Jung, Jean Christoph
    Lutz, Carsten
    Goncharov, Sergey
    Schroeder, Lutz
    AUTOMATA, LANGUAGES, AND PROGRAMMING (ICALP 2014), PT II, 2014, 8573 : 256 - 267
  • [3] ProbLog Technology for Inference in a Probabilistic First Order Logic
    Bruynooghe, Maurice
    Mantadelis, Theofrastos
    Kimmig, Angelika
    Gutmann, Bernd
    Vennekens, Joost
    Janssens, Gerda
    De Raedt, Luc
    ECAI 2010 - 19TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2010, 215 : 719 - 724
  • [4] Irrelevance and conditioning in first-order probabilistic logic
    Koller, D
    Halpern, JY
    PROCEEDINGS OF THE THIRTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND THE EIGHTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE, VOLS 1 AND 2, 1996, : 569 - 576
  • [5] A first-order probabilistic logic with application to measurement representations
    Rossi, Giovanni B.
    Crenna, Francesco
    MEASUREMENT, 2016, 79 : 251 - 259
  • [6] A first-order probabilistic logic with approximate conditional probabilities
    Ikodinovic, Nebojsa
    Raskovic, Miodrag
    Markovic, Zoran
    Ognjanovic, Zoran
    LOGIC JOURNAL OF THE IGPL, 2014, 22 (04) : 539 - 564
  • [7] First-order probabilistic conditional logic and maximum entropy
    Fisseler, Jens
    LOGIC JOURNAL OF THE IGPL, 2012, 20 (05) : 796 - 830
  • [8] Programming with Personalized PageRank: A Locally Groundable First-Order Probabilistic Logic
    Wang, William Yang
    Mazaitis, Kathryn
    Cohen, William W.
    PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), 2013, : 2129 - 2138
  • [9] THE FIRST-ORDER LOGIC OF CZF IS INTUITIONISTIC FIRST-ORDER LOGIC
    Passmann, Robert
    JOURNAL OF SYMBOLIC LOGIC, 2024, 89 (01) : 308 - 330
  • [10] Lottery Semantics: A Compositional Semantics for Probabilistic First-Order Logic with Imperfect Information
    Galliani, P.
    Mann, A. L.
    STUDIA LOGICA, 2013, 101 (02) : 293 - 322