A Chebyshev-like Method for Approximating Matrix Square Root

被引:0
|
作者
Amat, Sergio [1 ]
Busquier, Sonia [1 ]
Ezquerro, Jose Antonio [2 ]
Hernandez-Veron, Miguel Angel [2 ]
Magrenan, Angel Alberto [2 ]
机构
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Cartagena, Region De Murci, Spain
[2] Univ La Rioja, Dept Matemat & Comp, Logrono, La Rioja, Spain
关键词
FRACTIONAL-POWERS; NEWTON METHOD; ALGORITHM;
D O I
10.1063/5.0027174
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The main aim of this study is to approximate the square root of matrices using an efficient iterative method. We analyse the convergence of the iterative method and the order of convergence of this kind of methods and we will apply our theoretical results to specific examples in order to prove that results.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Enhancing the applicability of Chebyshev-like method
    George, Santhosh
    Bate, Indra
    Muniyasamy, M.
    Chandhini, G.
    Senapati, Kedarnath
    JOURNAL OF COMPLEXITY, 2024, 83
  • [2] Chebyshev-like root-finding methods with accelerated convergence
    Petkovic, M. S.
    Rancic, L.
    Petkovic, L. D.
    Ilic, S.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2009, 16 (11-12) : 971 - 994
  • [3] GENERATING FUNCTIONS OF CHEBYSHEV-LIKE POLYNOMIALS
    Bostan, Alin
    Salvy, Bruno
    Tran, Khang
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2010, 6 (07) : 1659 - 1667
  • [4] Semilocal convergence of Chebyshev-like root-finding method for simultaneous approximation of polynomial zeros
    Proinov, Petko D.
    Cholakov, Slav I.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 236 : 669 - 682
  • [5] Integral transforms and Chebyshev-like polynomials
    Dattoli, G
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 148 (01) : 225 - 234
  • [6] LOCAL CONVERGENCE OF CHEBYSHEV-LIKE METHOD FOR SIMULTANEOUS FINDING POLYNOMIAL ZEROS
    Cholakov, Slav I.
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2013, 66 (08): : 1081 - 1090
  • [7] ON THE GUARANTEED CONVERGENCE OF THE CHEBYSHEV-LIKE METHOD FOR COMPUTING POLYNOMIAL ZEROS
    Petkovic, M. S.
    Rancic, L. Z.
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2006, 21 : 77 - 86
  • [8] CHEBYSHEV-LIKE INEQUALITIES FOR DAM MODELS
    TURNBULL, BW
    JOURNAL OF APPLIED PROBABILITY, 1972, 9 (03) : 617 - &
  • [9] Discriminants and divisibility for chebyshev-like polynomials
    Stolarsky, KB
    NUMBER THEORY FOR THE MILLENNIUM III, 2002, : 243 - 252
  • [10] ON THE CONVERGENCE OF A MODIFIED CHEBYSHEV-LIKE'S METHOD FOR SOLVING NONLINEAR EQUATIONS
    Zheng, Lin
    Zhang, Ke
    Chen, Liang
    TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (01): : 193 - 209