Algorithmic Learning for Steganography: Proper Learning of k-term DNF Formulas from Positive Samples

被引:3
|
作者
Ernst, Matthias [1 ,2 ]
Liskiewicz, Maciej [1 ]
Reischuk, Ruediger [1 ]
机构
[1] Med Univ Lubeck, Inst Theoret Informat, D-23538 Lubeck, Germany
[2] Med Univ Lubeck, Grad Sch Comp Med & Life Sci, D-23538 Lubeck, Germany
来源
关键词
D O I
10.1007/978-3-662-48971-0_14
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Proper learning from positive samples is a basic ingredient for designing secure steganographic systems for unknown covertext channels. In addition, security requirements imply that the hypothesis should not contain false positives. We present such a learner for k-term DNF formulas for the uniform distribution and a generalization to q-bounded distributions. We briefly also describe how these results can be used to design a secure stegosystem.
引用
收藏
页码:151 / 162
页数:12
相关论文
共 15 条
  • [1] Proper learning of k-term DNF formulas from satisfying assignments
    Liskiewicz, Maciej
    Lutter, Matthias
    Reischuk, Ruediger
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2019, 106 : 129 - 144
  • [2] Fast learning of k-term DNF formulas with queries
    Blum, A
    Rudich, S
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1995, 51 (03) : 367 - 373
  • [3] Learning nearly monotone k-term DNF
    Castro, J
    Guijarro, D
    Lavin, V
    INFORMATION PROCESSING LETTERS, 1998, 67 (02) : 75 - 79
  • [4] ILP through propositionalization and stochastic k-term DNF learning
    Paes, Aline
    Zelezny, Filip
    Zaverucha, Gerson
    Page, David
    Srinivasan, Ashwin
    INDUCTIVE LOGIC PROGRAMMING, 2007, 4455 : 379 - +
  • [5] Phase transitions and stochastic local search in k-term DNF learning
    Rückert, U
    Kramer, S
    De Raedt, L
    MACHINE LEARNING: ECML 2002, 2002, 2430 : 405 - 417
  • [6] P-sufficient statistics for PAC learning k-term-DNF formulas through enumeration
    Apolloni, B
    Gentile, C
    THEORETICAL COMPUTER SCIENCE, 2000, 230 (1-2) : 1 - 37
  • [7] Learning monotone log-term DNF formulas under the uniform distribution
    Sakai, Y
    Maruoka, A
    THEORY OF COMPUTING SYSTEMS, 2000, 33 (01) : 17 - 33
  • [8] Learning Monotone Log-Term DNF Formulas under the Uniform Distribution
    Y. Sakai
    A. Maruoka
    Theory of Computing Systems, 2000, 33 : 17 - 33
  • [9] Learning k-Occurrence Regular Expressions from Positive and Negative Samples
    Li, Yeting
    Mou, Xiaoying
    Chen, Haiming
    CONCEPTUAL MODELING, ER 2019, 2019, 11788 : 264 - 272
  • [10] Support Vector Machine Learning from Positive and Unlabeled Samples
    Ji, Ai-bing
    Niu, Qi-ming
    Ha, Ming-hu
    2008 3RD INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEM AND KNOWLEDGE ENGINEERING, VOLS 1 AND 2, 2008, : 978 - +