Learning Model-Agnostic Counterfactual Explanations for Tabular Data

被引:84
|
作者
Pawelczyk, Martin [1 ]
Broelemann, Klaus [2 ]
Kasneci, Gjergji [1 ]
机构
[1] Univ Tubingen, Tubingen, Germany
[2] Schufa Holding AG, Wiesbaden, Germany
关键词
Transparency; Counterfactual explanations; Interpretability;
D O I
10.1145/3366423.3380087
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Counterfactual explanations can be obtained by identifying the smallest change made to an input vector to influence a prediction in a positive way from a user's viewpoint; for example, from 'loan rejected' to 'awarded' or from 'high risk of cardiovascular disease' to 'low risk'. Previous approaches would not ensure that the produced counterfactuals be proximate (i.e., not local outliers) and connected to regions with substantial data density (i.e., close to correctly classified observations), two requirements known as counterfactual faithfulness. Our contribution is twofold. First, drawing ideas from the manifold learning literature, we develop a framework, called C-CHVAE, that generates faithful counter-factuals. Second, we suggest to complement the catalog of counterfactual quality measures using a criterion to quantify the degree of difficulty for a certain counterfactual suggestion. Our real world experiments suggest that faithful counterfactuals come at the cost of higher degrees of difficulty.
引用
收藏
页码:3126 / 3132
页数:7
相关论文
共 50 条
  • [1] Model-Agnostic Counterfactual Explanations in Credit Scoring
    Dastile, Xolani
    Celik, Turgay
    Vandierendonck, Hans
    IEEE ACCESS, 2022, 10 : 69543 - 69554
  • [2] Model-Agnostic Counterfactual Explanations for Consequential Decisions
    Karimi, Amir-Hossein
    Barthe, Gilles
    Balle, Borja
    Valera, Isabel
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 895 - 904
  • [3] Explain the Explainer: Interpreting Model-Agnostic Counterfactual Explanations of a Deep Reinforcement Learning Agent
    Chen Z.
    Silvestri F.
    Tolomei G.
    Wang J.
    Zhu H.
    Ahn H.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (04): : 1443 - 1457
  • [4] Individualized help for at-risk students using model-agnostic and counterfactual explanations
    Smith, Bevan, I
    Chimedza, Charles
    Buhrmann, Jacoba H.
    EDUCATION AND INFORMATION TECHNOLOGIES, 2022, 27 (02) : 1539 - 1558
  • [5] CountARFactuals - Generating Plausible Model-Agnostic Counterfactual Explanations with Adversarial Random Forests
    Dandl, Susanne
    Blesch, Kristin
    Freiesleben, Timo
    Koenig, Gunnar
    Kapar, Jan
    Bischl, Bernd
    Wright, Marvin N.
    EXPLAINABLE ARTIFICIAL INTELLIGENCE, PT III, XAI 2024, 2024, 2155 : 85 - 107
  • [6] Individualized help for at-risk students using model-agnostic and counterfactual explanations
    Bevan I. Smith
    Charles Chimedza
    Jacoba H. Bührmann
    Education and Information Technologies, 2022, 27 : 1539 - 1558
  • [7] On the transferability of local model-agnostic explanations of machine learning models to unseen data
    Lopez Gonzalez, Alba Maria
    Garcia-Cuesta, Esteban
    IEEE CONFERENCE ON EVOLVING AND ADAPTIVE INTELLIGENT SYSTEMS 2024, IEEE EAIS 2024, 2024, : 243 - 252
  • [8] BayCon: Model-agnostic Bayesian Counterfactual Generator
    Romashov, Piotr
    Gjoreski, Martin
    Sokol, Kacper
    Martinez, Maria Vanina
    Langheinrich, Marc
    PROCEEDINGS OF THE THIRTY-FIRST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2022, 2022, : 740 - 746
  • [9] Interactive Visualization of Counterfactual Explanations for Tabular Data
    Guyomard, Victor
    Fessant, Francoise
    Guyet, Thomas
    Bouadi, Tassadit
    Termier, Alexandre
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: APPLIED DATA SCIENCE AND DEMO TRACK, ECML PKDD 2023, PT VII, 2023, 14175 : 330 - 334
  • [10] Real-Time, Model-Agnostic and User-Driven Counterfactual Explanations Using Autoencoders
    Soto, Jokin Labaien
    Uriguen, Ekhi Zugasti
    Garcia, Xabier De Carlos
    APPLIED SCIENCES-BASEL, 2023, 13 (05):