SQNR-based Layer-wise Mixed-Precision Schemes with Computational Complexity Consideration

被引:0
|
作者
Kim, Ha-Na [1 ,2 ]
Eun, Hyun [3 ]
Choi, Jung Hwan [3 ]
Kim, Ji-Hoon [1 ,2 ]
机构
[1] Ewha Womans Univ, Dept Elect & Elect Engn, Seoul, South Korea
[2] Ewha Womans Univ, Grad Program Smart Factory, Seoul, South Korea
[3] OPENEDGES Technol Inc, Seoul, South Korea
关键词
D O I
10.1109/ISCAS48785.2022.9937948
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
引用
收藏
页码:234 / 235
页数:2
相关论文
共 12 条
  • [1] Complexity-Aware Layer-Wise Mixed-Precision Schemes With SQNR-Based Fast Analysis
    Kim, Hana
    Eun, Hyun
    Choi, Jung Hwan
    Kim, Ji-Hoon
    IEEE ACCESS, 2023, 11 : 117800 - 117809
  • [2] Mixed-Precision Neural Network Quantization via Learned Layer-Wise Importance
    Tang, Chen
    Ouyang, Kai
    Wang, Zhi
    Zhu, Yifei
    Ji, Wen
    Wang, Yaowei
    Zhu, Wenwu
    COMPUTER VISION, ECCV 2022, PT XI, 2022, 13671 : 259 - 275
  • [3] Design Space Exploration of Layer-Wise Mixed-Precision Quantization with Tightly Integrated Edge Inference Units
    Zhao, Xiaotian
    Gao, Yimin
    Verma, Vaibhav
    Xu, Ruge
    Stan, Mircea
    Guo, Xinfei
    PROCEEDINGS OF THE GREAT LAKES SYMPOSIUM ON VLSI 2023, GLSVLSI 2023, 2023, : 467 - 471
  • [4] Edge-MPQ: Layer-Wise Mixed-Precision Quantization With Tightly Integrated Versatile Inference Units for Edge Computing
    Zhao, Xiaotian
    Xu, Ruge
    Gao, Yimin
    Verma, Vaibhav
    Stan, Mircea R.
    Guo, Xinfei
    IEEE TRANSACTIONS ON COMPUTERS, 2024, 73 (11) : 2504 - 2519
  • [5] Mixed-Precision Deep Learning Based on Computational Memory
    Nandakumar, S. R.
    Le Gallo, Manuel
    Piveteau, Christophe
    Joshi, Vinay
    Mariani, Giovanni
    Boybat, Irem
    Karunaratne, Geethan
    Khaddam-Aljameh, Riduan
    Egger, Urs
    Petropoulos, Anastasios
    Antonakopoulos, Theodore
    Rajendran, Bipin
    Sebastian, Abu
    Eleftheriou, Evangelos
    FRONTIERS IN NEUROSCIENCE, 2020, 14
  • [6] Mixed-precision architecture based on computational memory for training deep neural networks
    Nandakumar, S. R.
    Le Gallo, Manuel
    Boybat, Irem
    Rajendran, Bipin
    Sebastian, Abu
    Eleftheriou, Evangelos
    2018 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2018,
  • [7] Mixed-Precision Continual Learning Based on Computational Resistance Random Access Memory
    Li, Yi
    Zhang, Woyu
    Xu, Xiaoxin
    He, Yifan
    Dong, Danian
    Jiang, Nanjia
    Wang, Fei
    Guo, Zeyu
    Wang, Shaocong
    Dou, Chunmeng
    Liu, Yongpan
    Wang, Zhongrui
    Shang, Dashan
    ADVANCED INTELLIGENT SYSTEMS, 2022, 4 (08)
  • [8] REISSNER'S MIXED VARIATIONAL THEOREM FOR LAYER-WISE REFINED BEAM MODELS BASED ON THE UNIFIED FORMULATION
    Carrera, Erasmo
    de Miguel, Alberto Garcia
    Pagani, Alfonso
    Zappino, Enrico
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2017, VOL 1, 2018,
  • [9] Block-Wise Mixed-Precision Quantization: Enabling High Efficiency for Practical ReRAM-Based DNN Accelerators
    Wu, Xueying
    Hanson, Edward
    Wang, Nansu
    Zheng, Qilin
    Yang, Xiaoxuan
    Yang, Huanrui
    Li, Shiyu
    Cheng, Feng
    Pande, Partha Pratim
    Doppa, Janardhan Rao
    Chakrabarty, Krishnendu
    Li, Hai
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2024, 43 (12) : 4558 - 4571
  • [10] A layer-wise plasticity-based approach for the analysis of reinforced concrete shell structures using a mixed finite element
    Liguori, F. S.
    Corrado, A.
    Bilotta, A.
    Madeo, A.
    ENGINEERING STRUCTURES, 2023, 285