Grand unified theory with a stable proton

被引:2
|
作者
Fornal, Bartosz [1 ]
Grinstein, Benjamin [1 ]
机构
[1] Univ Calif San Diego, Dept Phys, 9500 Gilman Dr, La Jolla, CA 92093 USA
来源
关键词
Grand unification; SU(5); proton decay; PHENOMENOLOGICAL LAGRANGIANS; STABILITY; SU(5); COLOR; MODEL; UNIFICATION; LEPTONS; DECAY; WEAK;
D O I
10.1142/S0217751X1844013X
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We demonstrate that a phenomenologically viable four-dimensional grand unified theory with no proton decay can be constructed. This is done in the framework of the minimal nonsupersymmetric SU(5) GUT by introducing new representations and separating the physical quark and lepton fields into different multiplets. In such a theory all beyond Standard Model particles are naturally heavy, but one can tune the parameters of the model such that gauge coupling unification is achieved and some of the new particles are at the TeV scale and accessible at the LHC.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] GRAND UNIFIED MODEL WITH A STABLE PROTON AND NO AXION PROBLEM
    DESHPANDE, NG
    MANNHEIM, PD
    PHYSICS LETTERS B, 1980, 94 (03) : 355 - 358
  • [2] PROTON DECAYS IN AN SO(10) GRAND UNIFIED THEORY
    HARA, Y
    MATSUKI, T
    YAMAMOTO, N
    PROGRESS OF THEORETICAL PHYSICS, 1982, 68 (02): : 652 - 664
  • [3] PROTON LIFETIME IN AN SO(10) GRAND UNIFIED THEORY
    MATSUKI, T
    YAMAMOTO, N
    PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (05): : 1505 - 1523
  • [4] Grand unified theory
    Swan, Russ, 2000, IChemE, Rugby, United Kingdom
  • [5] The grand unified theory
    Escultura, E. E.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (03) : 823 - 831
  • [6] Grand unified theory
    Swan, R
    CHEMICAL ENGINEER-LONDON, 2000, (708): : 23 - 23
  • [7] GRAND UNIFIED THEORIES AND PROTON DECAY
    LANGACKER, P
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1981, 72 (04): : 185 - 385
  • [8] PROTON DECAY IN GRAND UNIFIED THEORIES
    LUCHA, W
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1985, 33 (10): : 547 - 594
  • [9] Gravitational breaking of the grand unified theory group and the grand unified theory Planck hierarchy
    Urano, S
    Ring, D
    Arnowitt, R
    PHYSICAL REVIEW LETTERS, 1996, 76 (20) : 3663 - 3666
  • [10] The mathematics of the grand unified theory
    Escultura, E. E.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E420 - E431