Co/CoOx heterojunctions encapsulated N-doped carbon sheets via a dual-template-guided strategy as efficient electrocatalysts for rechargeable Zn-air battery

被引:47
|
作者
Zhong, Lin [1 ]
Zhou, Hu [1 ]
Li, Ruifeng [1 ]
Cheng, Hao [1 ]
Wang, Sheng [2 ]
Chen, Boyuan [1 ]
Zhuang, Yongyue [1 ]
Chen, Junfeng [1 ]
Yuan, Aihua [2 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Mat Sci & Engn, Zhenjiang 212003, Jiangsu, Peoples R China
[2] Jiangsu Univ Sci & Technol, Sch Environm & Chem Engn, Zhenjiang 212003, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Electrocatalyst; Zn-air batteries; Carbon sheet; Zeolitic imidazolate framework; OXYGEN REDUCTION; POROUS CARBON; CATALYSTS; GRAPHENE; NANOSHEETS;
D O I
10.1016/j.jcis.2021.04.084
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing highly efficient oxygen electrocatalysts is of vital importance for rechargeable Zn-air batteries (ZABs). Herein, Co/CoOx nano-heterojunctions encapsulated into nitrogen-doped carbon sheets (NCS@Co/CoOx) are fabricated via a dual-template-guided approach by using zeolitic imidazolate frameworks (ZIFs) as templates. The synergistic integration of structural and compositional advantages endows such catalyst with superior catalytic properties to benchmark noble-metal catalysts. To be specific, the hierarchical micro/mesopores affords massive mass transport channels and maximizes the exposure of accessible active sites, whereas the NCS matrix accelerates electron transfer and prevents the self-aggregation of active species during the electrocatalytic reaction. Moreover, abundant and synergistic Co-based active sites (CoO, Co3O4, Co-N-x) greatly promote the catalytic activity. As the cathode of both liquid and flexible solid-state ZABs, excellent device properties are achieved, outperforming those assembled with commercial Pt/C+RuO2 catalyst. This work presents a feasible and cost-effective strategy for developing oxygen electrocatalysts derived from ZIFs templates. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:46 / 57
页数:12
相关论文
共 50 条
  • [1] Co nanoparticles encapsulated in N-doped carbon nanofibers as bifunctional catalysts for rechargeable Zn-air battery
    Li, Huizheng
    An, Mingqi
    Zhao, Yuwei
    Pi, Shuai
    Li, Chunjian
    Sun, Wei
    Wang, Heng-guo
    APPLIED SURFACE SCIENCE, 2019, 478 : 560 - 566
  • [2] Co/N-Doped hierarchical porous carbon as an efficient oxygen electrocatalyst for rechargeable Zn-air battery
    Zhou, Wenshu
    Liu, Yanyan
    Liu, Huan
    Wu, Dichao
    Zhang, Gaoyue
    Jiang, Jianchun
    RSC ADVANCES, 2021, 11 (26) : 15753 - 15761
  • [3] CoNi Nanoalloys @ N-Doped Graphene Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zn-Air Batteries
    Zhu, Zhaogen
    Xu, Qianqun
    Ni, Zhaotong
    Luo, Kaifen
    Liu, Yiyi
    Yuan, Dingsheng
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (40): : 13491 - 13500
  • [4] Exploiting encapsulated FeCo alloy decorated N-doped hierarchically porous carbon electrocatalysts in rechargeable Zn-air batteries
    Gao, Jingxia
    Wang, Luyuan
    Zhu, Ping
    Zhao, Xinsheng
    Wang, Guoxiang
    Liu, Sa
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 870
  • [5] N, P-doped carbon nanotubes encapsulated with Co2P nanoparticles as efficient bifunctional oxygen electrocatalysts for rechargeable Zn-air battery
    Sun, Tiantian
    Li, Tianjiao
    Han, Donglai
    Liu, Lina
    Wang, Heng-guo
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2023, 928
  • [6] FeN x /ZnSe/Fe Heterojunctions Embedded in Leafy N-Doped Carbon as Efficient Bifunctional Oxygen Electrocatalysts for Flexible Rechargeable Zn-Air Batteries
    Peng, Lijuan
    Zhong, Jiahuan
    Zhang, Chengkai
    Zhang, Yaohao
    Yuan, Dingsheng
    ENERGY & FUELS, 2024, 38 (13) : 12172 - 12181
  • [7] Biomass derived Fe,N-doped carbon material as bifunctional electrocatalysts for rechargeable Zn-air batteries
    Luo, Xiaoli
    Liu, Zhen
    Ma, Yaping
    Nan, Yanxia
    Gu, Yu
    Li, Shunli
    Zhou, Qiulan
    Mo, Junming
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 888
  • [8] Biomass derived Fe,N-doped carbon material as bifunctional electrocatalysts for rechargeable Zn-air batteries
    Luo, Xiaoli
    Liu, Zhen
    Ma, Yaping
    Nan, Yanxia
    Gu, Yu
    Li, Shunli
    Zhou, Qiulan
    Mo, Junming
    Zhou, Qiulan (qlzhou@hnu.edu.cn); Mo, Junming (jmo1@e.ntu.edu.sg), 1600, Elsevier Ltd (888):
  • [9] Efficient MnO and Co nanoparticles coated with N-doped carbon as a bifunctional electrocatalyst for rechargeable Zn-air batteries
    Peng, Lijuan
    Peng, Xiaomin
    Zhu, Zhaogen
    Xu, Qianqun
    Luo, Kaifen
    Ni, Zhaotong
    Yuan, Dingsheng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (50) : 19126 - 19136
  • [10] Hierarchical sulfur and nitrogen co-doped carbon nanocages as efficient bifunctional oxygen electrocatalysts for rechargeable Zn-air battery
    Fan, Hao
    Wang, Yu
    Gao, Fujie
    Yang, Longqi
    Liu, Meng
    Du, Xiao
    Wang, Peng
    Yang, Lijun
    Wu, Qiang
    Wang, Xizhang
    Hu, Zheng
    JOURNAL OF ENERGY CHEMISTRY, 2019, 34 : 64 - 71