Defining transcribed regions using RNA-seq

被引:52
|
作者
Wilhelm, Brian T. [2 ]
Marguerat, Samuel [1 ,3 ]
Goodhead, Ian [4 ]
Bahler, Jurg [1 ,3 ]
机构
[1] UCL, Dept Genet Evolut & Environm, London, England
[2] Univ Montreal, IRIC, Montreal, PQ, Canada
[3] UCL, Inst Canc, London, England
[4] Univ Liverpool, Unit Funct & Comparat Genom, Sch Biol Sci, Liverpool L69 3BX, Merseyside, England
关键词
EUKARYOTIC TRANSCRIPTOME; ALIGNMENT; DISCOVERY;
D O I
10.1038/nprot.2009.229
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Next-generation sequencing technologies are revolutionizing genomics research. It is now possible to generate gigabase pairs of DNA sequence within a week without time-consuming cloning or massive infrastructure. this technology has recently been applied to the development of 'RNA-seq' techniques for sequencing cDNA from various organisms, with the goal of characterizing entire transcriptomes. these methods provide unprecedented resolution and depth of data, enabling simultaneous quantification of gene expression, discovery of novel transcripts and exons, and measurement of splicing efficiency. We present here a validated protocol for nonstrand-specific transcriptome sequencing via RNA-seq, describing the library preparation process and outlining the bioinformatic analysis procedure. While sample preparation and sequencing take a fairly short period of time (1-2 weeks), the downstream analysis is by far the most challenging and time-consuming aspect and can take weeks to months, depending on the experimental objectives.
引用
收藏
页码:255 / 266
页数:12
相关论文
共 50 条
  • [1] Defining transcribed regions using RNA-seq
    Brian T Wilhelm
    Samuel Marguerat
    Ian Goodhead
    Jürg Bähler
    Nature Protocols, 2010, 5 : 255 - 266
  • [2] Defining the clonality of peripheral T cell lymphomas using RNA-seq
    Brown, Scott D.
    Hapgood, Greg
    Steidl, Christian
    Weng, Andrew P.
    Savage, Kerry J.
    Holt, Robert A.
    BIOINFORMATICS, 2017, 33 (08) : 1111 - 1115
  • [3] Defining the transcriptomic landscape of Candida glabrata by RNA-Seq
    Linde, Joerg
    Duggan, Seana
    Weber, Michael
    Horn, Fabian
    Sieber, Patricia
    Hellwig, Daniela
    Riege, Konstantin
    Marz, Manja
    Martin, Ronny
    Guthke, Reinhard
    Kurzai, Oliver
    NUCLEIC ACIDS RESEARCH, 2015, 43 (03) : 1392 - 1406
  • [4] Identifying atypically expressed chromosome regions using RNA-Seq data
    Mayrink, Vinicius Diniz
    Goncalves, Flavio B.
    STATISTICAL METHODS AND APPLICATIONS, 2020, 29 (03): : 619 - 649
  • [5] Identifying atypically expressed chromosome regions using RNA-Seq data
    Vinícius Diniz Mayrink
    Flávio B. Gonçalves
    Statistical Methods & Applications, 2020, 29 : 619 - 649
  • [6] Profiling Alternative 3′ Untranslated Regions in Sorghum using RNA-seq Data
    Tu, Min
    Li, Yin
    FRONTIERS IN GENETICS, 2020, 11
  • [7] Elimination of PCR duplicates in RNA-seq and small RNA-seq using unique molecular identifiers
    Yu Fu
    Pei-Hsuan Wu
    Timothy Beane
    Phillip D. Zamore
    Zhiping Weng
    BMC Genomics, 19
  • [8] Elimination of PCR duplicates in RNA-seq and small RNA-seq using unique molecular identifiers
    Fu, Yu
    Wu, Pei-Hsuan
    Beane, Timothy
    Zamore, Phillip D.
    Weng, Zhiping
    BMC GENOMICS, 2018, 19
  • [9] RNA-Seq UD: A bioinformatics plattform for RNA-Seq analysis
    Ramirez, Miguel
    Alejandro Rojas-Quintero, Cristian
    Enrique Vera-Parra, Nelson
    2015 10TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI), 2015,
  • [10] Identification of RNA polymerase III-transcribed Alu loci by computational screening of RNA-Seq data
    Conti, Anastasia
    Carnevali, Davide
    Bollati, Valentina
    Fustinoni, Silvia
    Pellegrini, Matteo
    Dieci, Giorgio
    NUCLEIC ACIDS RESEARCH, 2015, 43 (02) : 817 - 835