Auto-Generated Summaries for Stochastic Radio Channel Models

被引:0
|
作者
Bharti, Ayush [1 ]
Adeogun, Ramoni [1 ]
Pedersen, Troels [1 ]
机构
[1] Aalborg Univ, Dept Elect Syst, Aalborg, Denmark
关键词
radio channel modeling; autoencoder; approximate Bayesian computation; propagation graph; parameter estimation; machine learning;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, a calibration method has been proposed for estimating the parameters of stochastic radio channel models using summaries of channel impulse response measurements without multipath extraction. In this paper, we attempt to automatically generate summaries using an autoencoder for calibration of channel models. This approach avoids the need for explicitly designing informative summaries about the model parameters, which can be tedious. We test the method by calibrating the stochastic polarized propagation graph model on simulated as well as measured data. The autoencoder is found to generate summaries that give reasonably accurate results while calibrating the considered model.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Learning Parameters of Stochastic Radio Channel Models From Summaries
    Bharti, Ayush
    Adeogun, Ramoni
    Pedersen, Troels
    IEEE OPEN JOURNAL OF ANTENNAS AND PROPAGATION, 2020, 1 (01): : 175 - 188
  • [2] On the Naturalness of Auto-generated Code-Can We Identify Auto-Generated Code Automatically?-
    Doi, Masayuki
    Higo, Yoshiki
    Arima, Ryo
    Shimonaka, Kento
    Kusumoto, Shinji
    2018 IEEE/ACM 26TH INTERNATIONAL CONFERENCE ON PROGRAM COMPREHENSION (ICPC 2018), 2018, : 340 - 343
  • [3] Towards Auto-Generated Data Systems
    Cheung, Alvin
    Ahmad, Maaz Bin Safeer
    Haynes, Brandon
    Kittivorawong, Chanwut
    Laddad, Shadaj
    Liu, Xiaoxuan
    Wang, Chenglong
    Yan, Cong
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2023, 16 (12): : 4116 - 4129
  • [4] Auto-generated Strokes for Motion Segmentation
    Tian, Zhiqiang
    Xue, Jianru
    Li, Ce
    Lan, Xuguang
    Zheng, Nanning
    2011 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2011, : 857 - 860
  • [5] Comparing Manual- and Auto-Generated Textual Descriptions of Business Process Models
    Zaheer, Sheeza
    Shahzad, Khurram
    Nawab, Rao Muhammad Adeel
    2016 SIXTH INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING TECHNOLOGY (INTECH), 2016, : 41 - 46
  • [6] An Evaluation Model for Auto-generated Cognitive Scripts
    ELMougi, Ahmed M.
    Omar, Yasser M. K.
    Hodhod, Rania
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (08) : 333 - 340
  • [7] Human Experts' Perceptions of Auto-Generated Summarization Quality
    Lotfigolian, Maryam
    Papanikolaou, Christos
    Taghizadeh, Samaneh
    Sandnes, Frode Eika
    PROCEEDINGS OF THE 16TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS, PETRA 2023, 2023, : 95 - 98
  • [8] Mining Auto-Generated Test Inputs for Test Oracle
    Xu, Weifeng
    Wang, Hanlin
    Ding, Tao
    PROCEEDINGS OF THE 2013 10TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: NEW GENERATIONS, 2013, : 89 - 94
  • [9] Bitext Dependency Parsing With Auto-Generated Bilingual Treebank
    Chen, Wenliang
    Kazama, Jun'ichi
    Zhang, Min
    Tsuruoka, Yoshimasa
    Zhang, Yujie
    Wang, Yiou
    Torisawa, Kentaro
    Li, Haizhou
    IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2012, 20 (05): : 1461 - 1472
  • [10] A database of battery materials auto-generated using ChemDataExtractor
    Huang, Shu
    Cole, Jacqueline M.
    SCIENTIFIC DATA, 2020, 7 (01)