EEG Based Emotion Recognition by Combining Functional Connectivity Network and Local Activations

被引:275
|
作者
Li, Peiyang [1 ,2 ,3 ]
Liu, Huan [1 ,2 ]
Si, Yajing [1 ,2 ]
Li, Cunbo [1 ,2 ]
Li, Fali [1 ,2 ]
Zhu, Xuyang [1 ,2 ]
Huang, Xiaoye [1 ,2 ]
Zen, Ying [1 ,2 ]
Yao, Dezhong [1 ,2 ]
Zhang, Yangsong [1 ,2 ,4 ]
Xu, Peng [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Clin Hosp, MOE Key Lab Neuroinformat, Chengdu Brain Sci Inst, Chengdu 610054, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Life Sci & Technol, Chengdu 610054, Sichuan, Peoples R China
[3] Chongqing Univ Posts & Telecommun, Sch Bioinformat, Chongqing, Peoples R China
[4] Southwest Univ Sci & Technol, Sch Comp Sci & Technol, Mianyang 621010, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Emotion recognition; multiple-feature fusion; activation patterns; network patterns; Electroencephalogram (EEG); GRAPH-THEORETICAL ANALYSIS; FEATURE-SELECTION; FACIAL EXPRESSIONS; MUTUAL INFORMATION; BRAIN NETWORKS; BCI SYSTEM; MULTICOLLINEARITY; ATTENTION; CLASSIFICATION; RELEVANCE;
D O I
10.1109/TBME.2019.2897651
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective: Spectral power analysis plays a predominant role in electroencephalogram-based emotional recognition. It can reflect activity differences among multiple brain regions. In addition to activation difference, different emotions also involve different large-scale network during related information processing. In this paper, both information propagation patterns and activation difference in the brain were fused to improve the performance of emotional recognition. Methods: We constructed emotion-related brain networks with phase locking value and adopted a multiple feature fusion approach to combine the compensative activation and connection information for emotion recognition. Results: Recognition results on three public emotional databases demonstrated that the combined features are superior to either single feature based on power distribution or network character. Furthermore, the conducted feature fusion analysis revealed the common characters between activation and connection patterns involved in the positive, neutral, and negative emotions for information processing. Significance: The proposed feasible combination of both information propagation patterns and activation difference in the brain is meaningful for developing the effective human-computer interaction systems by adapting to human emotions in the real world applications.
引用
收藏
页码:2869 / 2881
页数:13
相关论文
共 50 条
  • [1] Emotion Recognition Based on Fusion of Local Cortial Activations and Dynamic Functional Networks Connectivity: An EEG Study
    Al-Shargie, Fares
    Tariq, Usman
    Alex, Meera
    Mir, Hasan
    Al-Nashash, Hasan
    IEEE ACCESS, 2019, 7 (143550-143562): : 143550 - 143562
  • [2] Functional Connectivity Network Based Emotion Recognition Combining Sample Entropy
    Zhang, Shilin
    Hu, Bin
    Ji, Cun
    Zheng, Xiangwei
    Zhang, Min
    IFAC PAPERSONLINE, 2020, 53 (05): : 458 - 463
  • [3] Emotion Recognition and Dynamic Functional Connectivity Analysis Based on EEG
    Liu, Xucheng
    Li, Ting
    Tang, Cong
    Xu, Tao
    Chen, Peng
    Bezerianos, Anastasios
    Wang, Hongtao
    IEEE ACCESS, 2019, 7 : 143293 - 143302
  • [4] Detection of alcoholism by combining EEG local activations with brain connectivity features and Graph Neural Network
    Pain, Subrata
    Roy, Saurav
    Sarma, Monalisa
    Samanta, Debasis
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 85
  • [5] Enhancing local representation learning through global–local integration with functional connectivity for EEG-based emotion recognition
    Fu B.
    Yu X.
    Jiang G.
    Sun N.
    Liu Y.
    Computers in Biology and Medicine, 2024, 179
  • [6] Investigating EEG-based functional connectivity patterns for multimodal emotion recognition
    Wu, Xun
    Zheng, Wei-Long
    Li, Ziyi
    Lu, Bao-Liang
    JOURNAL OF NEURAL ENGINEERING, 2022, 19 (01)
  • [7] Identifying Functional Brain Connectivity Patterns for EEG-Based Emotion Recognition
    Wu, Xun
    Zheng, Wei-Long
    Lu, Bao-Liang
    2019 9TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2019, : 235 - 238
  • [8] Graph Convolutional Network With Connectivity Uncertainty for EEG-Based Emotion Recognition
    Gao, Hongxiang
    Wang, Xingyao
    Chen, Zhenghua
    Wu, Min
    Cai, Zhipeng
    Zhao, Lulu
    Li, Jianqing
    Liu, Chengyu
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (10) : 5917 - 5928
  • [9] Graph Convolutional Neural Network Based Emotion Recognition with Brain Functional Connectivity Network
    Gao, Pengzhi
    Zheng, Xiangwei
    Wang, Tao
    Zhang, Yuang
    International Journal of Crowd Science, 2024, 8 (04) : 195 - 204
  • [10] EEG Based Depression Recognition by Combining Functional Brain Network and Traditional Biomarkers
    Sun, Shuting
    Chen, Huayu
    Shao, Xuexiao
    Liu, Liangliang
    Li, Xiaowei
    Hu, Bin
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 2074 - 2081