3D modelling of multipass welding of a 316L stainless steel pipe

被引:106
|
作者
Duranton, P
Devaux, J
Robin, V
Gilles, P
Bergheau, JM
机构
[1] Le Discover, ESI France, F-69485 Lyon 03, France
[2] FRAMATOME ANP, F-92084 Paris, France
[3] CNRS, ECL, ENISE, UMR 5513,LTDS, F-42100 St Etienne, France
关键词
welding; multipass; simulation; finite element;
D O I
10.1016/j.jmatprotec.2004.04.128
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Welding processes induce residual stresses and distortions which can play a major role in the mechanical strength of a component. Numerical simulation of processes is of big help to control these effects as it provides the evolution of physical quantities such as temperature, stresses and strains at any point in the structure. Simulations of single pass welding stresses give today rather satisfying results. Prediction of distortions is far much difficult as it needs 3D simulations to accurately take account of the constraining conditions induced by the weld bead. The difficulty is still increased when considering multipass welding. This paper presents the 3D finite element simulation of multipass welding of a 316L stainless steel pipe. The whole process includes 13 weld passes and the simulation has been achieved using adaptive mesh refinements and a procedure to transport the results between the different meshes. The thermo-mechanical model used as well as the simulation methodology are detailed. Computed distortions and residual stresses are compared with experimental measurements after five passes. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:457 / 463
页数:7
相关论文
共 50 条
  • [1] 3D numerical model of austenitic stainless steel 316L multipass butt welding and comparison with experimental results
    Kyriakongonas, A. P.
    Papazoglou, V. J.
    ANALYSIS AND DESIGN OF MARINE STRUCTURES, 2009, : 371 - 376
  • [2] Recrystallization kinetics in 3D printed 316L stainless steel
    Zhang, C.
    Ahmed, S.
    Nadimpalli, V. K.
    Yu, T.
    Jensen, D. Juul
    44TH RISO INTERNATIONAL SYMPOSIUM ON MATERIALS SCIENCE, RISO 2024, 2024, 1310
  • [3] Effect of Process Parameters on Welding Residual Stress of 316L Stainless Steel Pipe
    Jiang, Xiaowei
    Wang, Wenhui
    Xu, Chunguang
    Li, Jingdong
    Lu, Jiangquan
    MATERIALS, 2024, 17 (10)
  • [4] PARAMETRIC OPTIMISATION OF LASER WELDING OF STAINLESS STEEL 316L
    Butt, Adnan Qayyum
    Tayyaba, Qanita
    Raza, Muhammad Ali
    Rehman, Abdul
    Khan, Tayyab Ali
    Shahzad, Muhmmad
    ACTA POLYTECHNICA, 2024, 64 (02) : 77 - 86
  • [5] Linear friction welding of AISI 316L stainless steel
    Bhamji, Imran
    Preuss, Michael
    Threadgill, Philip L.
    Moat, Richard J.
    Addison, Adrian C.
    Peel, Matthew J.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 528 (02): : 680 - 690
  • [6] 3d printing of stainless steel 316L and its weldability for corrosive environments
    Sampath, Venkata Krishnan
    Silori, Praveen
    Paradkar, Parth
    Niauzorau, Stanislau
    Sharstniou, Aliaksandr
    Hasib, Amm
    Villalobos, Samuel
    Azeredo, Bruno
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 833
  • [7] 3D simulation of machining parameters of electrochemical micromachining for stainless steel (316L)
    Kumar, Abhinav
    Singh, Arvind
    Yadav, H. N. S.
    Kumar, Manjesh
    Das, Manas
    MATERIALS TODAY-PROCEEDINGS, 2021, 45 : 4565 - 4570
  • [8] 2D and 3D numerical simulations of TIG welding of a 316L steel sheet
    Depradeux, Lionel
    Jullien, Jean-François
    Revue Europeenne des Elements, 2004, 13 (3-4): : 269 - 288
  • [9] Study on laser welding of AISI 316L austenitic stainless steel
    Dontu, O.
    Ocana Moreno, J. L.
    Ciobanu, R.
    Branzei, M.
    Besnea, D.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2015, 17 (9-10): : 1444 - 1449
  • [10] Effect of TIG welding on corrosion behavior of 316L stainless steel
    Dadfar, M.
    Fathi, M. H.
    Karimzadeh, F.
    Dadfar, M. R.
    Saatchi, A.
    MATERIALS LETTERS, 2007, 61 (11-12) : 2343 - 2346