Grundy domination and zero forcing in Kneser graphs

被引:14
|
作者
Bresar, Bostjan [1 ,2 ]
Kos, Tim [2 ]
Daniel Tones, Pablo [3 ,4 ]
机构
[1] Univ Maribor, Fac Nat Sci & Math, Ljubljana, Slovenia
[2] Inst Math Phys & Mech, Ljubljana, Slovenia
[3] Univ Nacl Rosario, Dept Matemat, Rosario, Argentina
[4] Consejo Nacl Invest Cient & Tecn, Rosario, Argentina
关键词
Grundy domination number; Grundy total domination number; Kneser graph; zero forcing number; minimum rank; MINIMUM RANK; INTERSECTION-THEOREMS; SEQUENCES; NUMBER; SYSTEMS; BOUNDS;
D O I
10.26493/1855-3974.1881.384
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we continue the investigation of different types of (Grundy) dominating sequences. We consider four different types of Grundy domination numbers and the related zero forcing numbers, focusing on these numbers in the well-known class of Kneser graphs K-n,K-r. In particular, we establish that the Grundy total domination number gamma(t)(gr) (K-n,K-r) equals ((2r)(r)) for any r >= 2 and n >= 2r + 1. For the Grundy domination number of Kneser graphs we get gamma(gr) (K-n,K-r) = alpha(K-n,K-r) whenever n is sufficiently larger than r. On the other hand, the zero forcing number Z(K-n,K-r) is proved to be ((n)(r)) - ((2r)(r)) when n >= 3r + 1 and r >= 2, while lower and upper bounds are provided for Z(K-n,K-r) when 2r + 1 <= n <= 3r. Some lower bounds for different types of minimum ranks of Kneser graphs are also obtained along the way.
引用
收藏
页码:419 / 430
页数:12
相关论文
共 50 条
  • [1] Grundy Domination and Zero Forcing in Regular Graphs
    Boštjan Brešar
    Simon Brezovnik
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 3637 - 3661
  • [2] Grundy Domination and Zero Forcing in Regular Graphs
    Bresar, Bostjan
    Brezovnik, Simon
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (06) : 3637 - 3661
  • [3] Loop Zero Forcing and Grundy Domination in Planar Graphs and Claw-Free Cubic Graphs
    Domat, Alex
    Kuenzel, Kirsti
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (04)
  • [4] Zero forcing number, Grundy domination number, and their variants
    Lin, Jephian C. -H.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 563 : 240 - 254
  • [5] Failed zero forcing numbers of Kneser graphs, Johnson graphs, and hypercubes
    Afzali, Fatemeh
    Ghodrati, Amir Hossein
    Maimani, Hamid Reza
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (03) : 2665 - 2675
  • [6] Zero forcing versus domination in cubic graphs
    Davila, Randy
    Henning, Michael A.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2021, 41 (02) : 553 - 577
  • [7] Zero forcing versus domination in cubic graphs
    Randy Davila
    Michael A. Henning
    Journal of Combinatorial Optimization, 2021, 41 : 553 - 577
  • [8] 2-Domination Zero Forcing in Graphs
    Hassan, Javier A.
    Laja, Ladznar S.
    Copel, Hounam B.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (04): : 1065 - 1070
  • [9] Grundy Hop Domination in Graphs
    Hassan, Javier A.
    Canoy, Sergio R., Jr.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, 15 (04): : 1623 - 1636
  • [10] Bounds on the domination number of Kneser graphs
    Ostergard, Patric R. J.
    Shao, Zehui
    Xu, Xiaodong
    ARS MATHEMATICA CONTEMPORANEA, 2015, 9 (02) : 197 - 205