The Nonlinear Schrodinger Equation for Orthonormal Functions II: Application to Lieb-Thirring Inequalities

被引:8
|
作者
Frank, Rupert L. [1 ,2 ,3 ]
Gontier, David [4 ,5 ]
Lewin, Mathieu [6 ]
机构
[1] CALTECH, Math 253-37, Pasadena, CA 91125 USA
[2] Ludwig Maximilans Univ Munchen, Math Inst, Theresienstr 39, D-80333 Munich, Germany
[3] Munich Ctr Quantum Sci & Technol MCQST, Schellingstr 4, D-80799 Munich, Germany
[4] PSL Univ, Univ Paris Dauphine, CEREMADE, F-75016 Paris, France
[5] PSL Univ, Univ Paris Dauphine, CNRS, F-75016 Paris, France
[6] PSL Univ, Univ Paris Dauphine, CEREMADE, F-75016 Paris, France
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
CONCENTRATION-COMPACTNESS PRINCIPLE; LOWEST EIGENVALUE; STABILITY; BOUNDS; UNIQUENESS; EXISTENCE; ATOMS; CONJECTURE; CONSTANTS; CALCULUS;
D O I
10.1007/s00220-021-04039-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we disprove part of a conjecture of Lieb and Thirring concerning the best constant in their eponymous inequality. We prove that the best Lieb-Thirring constant when the eigenvalues of a Schrodinger operator -Delta + V(x) are raised to the power. is never given by the one-bound state case when kappa > max(0, 2 - d/2) in space dimension d >= 1. When in addition kappa >= 1 we prove that this best constant is never attained for a potential having finitely many eigenvalues. The method to obtain the first result is to carefully compute the exponentially small interaction between two Gagliardo-Nirenberg optimisers placed far away. For the second result, we study the dual version of the Lieb-Thirring inequality, in the same spirit as in Part I of this work Gontier et al. (The nonlinear Schrodinger equation for orthonormal functions I. Existence of ground states. Arch. Rat. Mech. Anal, 2021. https://doi.org/10.1007/s00205-021-01634-7). In a different but related direction, we also show that the cubic nonlinear Schrodinger equation admits no orthonormal ground state in 1D, for more than one function.
引用
收藏
页码:1783 / 1828
页数:46
相关论文
共 50 条
  • [1] The Nonlinear Schrödinger Equation for Orthonormal Functions II: Application to Lieb–Thirring Inequalities
    Rupert L. Frank
    David Gontier
    Mathieu Lewin
    Communications in Mathematical Physics, 2021, 384 : 1783 - 1828
  • [2] On Lieb-Thirring inequalities for Schrodinger operators with virtual level
    Ekholm, T
    Frank, RL
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 264 (03) : 725 - 740
  • [3] On inequalities of Lieb-Thirring type
    Barsegyan, D. S.
    MATHEMATICAL NOTES, 2007, 82 (3-4) : 451 - 460
  • [4] On inequalities of Lieb-Thirring type
    D. S. Barsegyan
    Mathematical Notes, 2007, 82 : 451 - 460
  • [5] LIEB-THIRRING INEQUALITIES ON THE SPHERE
    Ilyin, A.
    Laptev, A.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2020, 31 (03) : 479 - 493
  • [6] MAGNETIC LIEB-THIRRING INEQUALITIES
    ERDOS, L
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 170 (03) : 629 - 668
  • [7] Lieb-Thirring inequalities on the torus
    Ilyin, A. A.
    Laptev, A. A.
    SBORNIK MATHEMATICS, 2016, 207 (10) : 1410 - 1434
  • [8] Lieb-Thirring inequalities for Schrodinger operators with complex-valued potentials
    Frank, Rupert L.
    Laptev, Ari
    Lieb, Elliott H.
    Seiringer, Robert
    LETTERS IN MATHEMATICAL PHYSICS, 2006, 77 (03) : 309 - 316
  • [9] Lieb-Thirring inequalities with improved constants
    Dolbeault, Jean
    Laptev, Ari
    Loss, Michael
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2008, 10 (04) : 1121 - 1126
  • [10] EQUIVALENCE OF SOBOLEV INEQUALITIES AND LIEB-THIRRING INEQUALITIES
    Frank, Rupert L.
    Lieb, Elliott H.
    Seiringer, Robert
    XVITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2010, : 523 - +