Prediction Analysis and Comparison between Agriculture and Mining Stocks in Indonesia by using Adaptive Neuro-Fuzzy Inference System (ANFIS)

被引:0
|
作者
Mahandrio, Irsantyo [1 ]
Budi, Andriantama [1 ]
Liong, The Houw [1 ]
Purqon, Acep [1 ]
机构
[1] Inst Teknol Bandung, Phys Earth & Complex Syst, Bandung, Indonesia
关键词
ANFIS; Stocks; Sugeno;
D O I
10.1063/1.4930735
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The growing patterns in cultural and mining sectors are interesting particularly in developed country such as in Indonesia. Here, we investigate the local characteristics of stocks between the sectors of agriculture and mining which si representing two leading companies and two common companies in these sectors. We analyze the prediction by using Adaptive Neuro Fuzzy Inference System (ANFIS). The type of Fuzzy Inference System (FIS) is Sugeno type with Generalized Bell membership function (Gbell). Our results show that ANFIS is a proper method to predicting the stock market with the RMSE : 0.14% for AALI and 0.093% for SGRO representing the agriculture sectors, meanwhile, 0.073% for ANTM and 0.1107% for MDCO representing the mining sectors.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Momentum Analysis based Stock Market Prediction using Adaptive Neuro-Fuzzy Inference System (ANFIS)
    Agrawal, Samarth
    Jindal, Manoj
    Pillai, G. N.
    INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS (IMECS 2010), VOLS I-III, 2010, : 526 - +
  • [2] PREDICTION OF BIOMASS PELLET DENSITY USING ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM(ANFIS) METHOD
    Liu, Juan
    Yan, Zhuoyu
    Xu, Mingze
    Liu, Yudi
    Bai, Xuewei
    Xiu, Yonghai
    Wei, Desheng
    INMATEH-AGRICULTURAL ENGINEERING, 2023, 70 (02): : 181 - 190
  • [3] Performance prediction of a hybrid microgeneration system using Adaptive Neuro-Fuzzy Inference System (ANFIS) technique
    Yang, L.
    Entchev, E.
    APPLIED ENERGY, 2014, 134 : 197 - 203
  • [4] LANDSLIDE SUSCEPTIBILITY MAPPING BY USING AN ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)
    Choi, J.
    Lee, Y. K.
    Lee, M. J.
    Kim, K.
    Park, Y.
    Kim, S.
    Goo, S.
    Cho, M.
    Sim, J.
    Won, J. S.
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 1989 - 1992
  • [5] Seizure Prediction Using Adaptive Neuro-Fuzzy Inference System
    Rabbi, Ahmed F.
    Azinfar, Leila
    Fazel-Rezai, Reza
    2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 2100 - 2103
  • [6] Prediction of breast dose in chest CT examinations using adaptive neuro-fuzzy inference system (ANFIS)
    Bahareh Moradmand Bahonar
    Vahid Changizi
    Ali Ebrahiminia
    Samaneh Baradaran
    Physical and Engineering Sciences in Medicine, 2023, 46 : 1071 - 1080
  • [7] Prediction of breast dose in chest CT examinations using adaptive neuro-fuzzy inference system (ANFIS)
    Bahonar, Bahareh Moradmand
    Changizi, Vahid
    Ebrahiminia, Ali
    Baradaran, Samaneh
    PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2023, 46 (03) : 1071 - 1080
  • [8] Prediction Reinforced Slope Stability Using Pile Using Adaptive Neuro-Fuzzy Inference System (ANFIS) Model)
    Saim, Noraida Mohd
    Kasa, Anuar
    JURNAL KEJURUTERAAN, 2024, 36 (02): : 591 - 599
  • [9] Discrimination between partial discharge pulses in voids using adaptive neuro-fuzzy inference system (ANFIS)
    Kolev, N.
    Chalashkanov, N.
    PROCEEDINGS OF THE 9TH WSEAS INTERNATIONAL CONFERENCE ON NEURAL NETWORKS (NN' 08): ADVANCED TOPICS ON NEURAL NETWORKS, 2008, : 15 - 19
  • [10] Respiratory motion prediction by using the adaptive neuro fuzzy inference system (ANFIS)
    Kakar, M
    Nyström, H
    Aarup, LR
    Nottrup, TJ
    Olsen, DR
    PHYSICS IN MEDICINE AND BIOLOGY, 2005, 50 (19): : 4721 - 4728