On 2-partition dimension of the circulant graphs

被引:10
|
作者
Nadeem, Asim [1 ]
Kashif, Agha [1 ]
Zafar, Sohail [1 ]
Zahid, Zohaib [1 ]
机构
[1] Univ Management & Technol, Dept Math, Lahore, Pakistan
关键词
Network topology design; Circulant graphs; partition dimension; k-partition dimension; PARTITION DIMENSION; METRIC DIMENSION;
D O I
10.3233/JIFS-201982
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The partition dimension is a variant of metric dimension in graphs. It has arising applications in the fields of network designing, robot navigation, pattern recognition and image processing. Let G(V(G), E(G)) be a connected graph and Gamma = {P-1, P-2,..., P-m} be an ordered m-partition of V(G). The partition representation of vertex v with respect to Gamma is an m-vector r(v|Gamma) = (d( v, P-1), d(v, P-2),..., d(v, P-m)), where d(v, P) = min{d(v, x)| x epsilon P} is the distance between v and P. If the m-vectors r(v|Gamma) differ in at least 2 positions for all v. V(G), then the m-partition is called a 2-partition generator of G. A 2-partition generator of G with minimum cardinality is called a 2-partition basis of G and its cardinality is known as the 2-partition dimension of G. Circulant graphs outperform other network topologies due to their low message delay, high connectivity and survivability, therefore are widely used in telecommunication networks, computer networks, parallel processing systems and social networks. In this paper, we computed partition dimension of circulant graphs C-n (1, 2) for n 2 (mod 4), n >= 18 and hence corrected the result given by Salman et al. [Acta Math. Sin. Engl. Ser. 2012, 28, 1851-1864]. We further computed the 2-partition dimension of C-n (1, 2) for n >= 6.
引用
收藏
页码:9493 / 9503
页数:11
相关论文
共 50 条
  • [1] On 2-partition dimension of rotationally-symmetric graphs
    Nadeem, Asim
    Kashif, Agha
    Zafar, Sohail
    Zahid, Zohaib
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (07)
  • [2] On the Partition Dimension of Circulant Graphs
    Grigorious, Cyriac
    Stephen, Sudeep
    Rajan, Bharati
    Miller, Mirka
    COMPUTER JOURNAL, 2017, 60 (02): : 180 - 184
  • [3] The partition dimension of circulant graphs
    Maritz, Elizabeth C. M.
    Vetrik, Tomas
    QUAESTIONES MATHEMATICAE, 2018, 41 (01) : 49 - 63
  • [4] On the Partition Dimension of Circulant Graphs
    Grigorious, Cyriac (cyriac.grigorious@gmail.com), 1600, Oxford University Press (60):
  • [5] On the partition dimension of a class of circulant graphs
    Grigorious, Cyriac
    Stephen, Sudeep
    Rajan, Bharati
    Miller, Mirka
    William, Albert
    INFORMATION PROCESSING LETTERS, 2014, 114 (07) : 353 - 356
  • [6] On the partition dimension of directed circulant graphs
    Maritz, Elizabeth C. M.
    Vetrik, Tomas
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2023, 26 (01): : 1 - 10
  • [7] ON THE METRIC DIMENSION OF CIRCULANT GRAPHS WITH 2 GENERATORS
    Du Toit, L.
    Vetrik, T.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2019, 43 (01): : 49 - 58
  • [8] The Metric Dimension of Circulant Graphs
    Vetrik, Tomas
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2017, 60 (01): : 206 - 216
  • [9] On the metric dimension of circulant graphs
    Imran, Muhammad
    Baig, A. Q.
    Bokhary, Syed Ahtsham Ul Haq
    Javaid, Imran
    APPLIED MATHEMATICS LETTERS, 2012, 25 (03) : 320 - 325
  • [10] On the metric dimension of circulant graphs
    Gao, Rui
    Xiao, Yingqing
    Zhang, Zhanqi
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (02): : 328 - 337