Fluorescence nanoscopy at the sub-10 nm scale

被引:18
|
作者
Masullo, Luciano A. [1 ,2 ]
Szalai, Alan M. [1 ]
Lopez, Lucia F. [2 ]
Stefani, Fernando D. [1 ,2 ]
机构
[1] Consejo Nacl Invest Cient & Tecn CONICET, Ctr Invest Bionanociencias CIBION, Godoy Cruz 2390,C1425FQD, Buenos Aires, Argentina
[2] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, Guiraldes 2620,C1428EHA, Buenos Aires, Argentina
关键词
Super-resolution microscopy; Single-molecule localization; Molecular resolution; SINGLE-MOLECULE LOCALIZATION; INDUCED ENERGY-TRANSFER; SUPERRESOLUTION MICROSCOPY; STED MICROSCOPY; OPTICAL NANOSCOPY; GENERAL-METHOD; RESOLUTION; PROBES; TRACKING; LIGHT;
D O I
10.1007/s12551-021-00864-z
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Fluorescence nanoscopy represented a breakthrough for the life sciences as it delivers 20-30 nm resolution using far-field fluorescence microscopes. This resolution limit is not fundamental but imposed by the limited photostability of fluorophores under ambient conditions. This has motivated the development of a second generation of fluorescence nanoscopy methods that aim to deliver sub-10 nm resolution, reaching the typical size of structural proteins and thus providing true molecular resolution. In this review, we present common fundamental aspects of these nanoscopies, discuss the key experimental factors that are necessary to fully exploit their capabilities, and discuss their current and future challenges.
引用
收藏
页码:1101 / 1112
页数:12
相关论文
共 50 条
  • [1] Fluorescence nanoscopy at the sub-10 nm scale
    Luciano A. Masullo
    Alan M. Szalai
    Lucía F. Lopez
    Fernando D. Stefani
    Biophysical Reviews, 2021, 13 : 1101 - 1112
  • [2] Far-field fluorescence nanoscopy with sub-10 nm resolution
    Stefani, Fernando D.
    BIOPHYSICAL REVIEWS, 2021, 13 (06) : 1495 - 1495
  • [3] Fluorescence in sub-10 nm channels with an optical enhancement layer
    Zhong, Junjie
    Talebi, Soheil
    Xu, Yi
    Pang, Yuanjie
    Mostowfi, Farshid
    Sinton, David
    LAB ON A CHIP, 2018, 18 (04) : 568 - 573
  • [4] Sub-10 nm porous alumina templates to produce sub-10 nm nanowires
    Resende, Pedro M.
    Martin-Gonzalez, Marisol
    MICROPOROUS AND MESOPOROUS MATERIALS, 2019, 284 (198-204) : 198 - 204
  • [5] Focus on sub-10 nm nanofabrication
    Perego, Michele
    NANOTECHNOLOGY, 2018, 29 (26)
  • [6] A progressive wafer scale approach for Sub-10 nm nanogap structures
    Cha, Jongjin
    Lee, Geon
    Lee, Dukhyung
    Kim, Dai-Sik
    Kim, Sunghwan
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [7] PCNA as Protein-Based Nanoruler for Sub-10 nm Fluorescence Imaging
    Helmerich, Dominic A.
    Budiarta, Made
    Taban, Danush
    Doose, Soeren
    Beliu, Gerti
    Sauer, Markus
    ADVANCED MATERIALS, 2024, 36 (07)
  • [8] CMOS Scaling for sub-90 nm to sub-10 nm
    Iwai, H
    17TH INTERNATIONAL CONFERENCE ON VLSI DESIGN, PROCEEDINGS: DESIGN METHODOLOGIES FOR THE GIGASCALE ERA, 2004, : 30 - 35
  • [9] Fluorescence near-field microscopy of DNA at sub-10 nm resolution
    Ma, Ziyang
    Gerton, Jordan M.
    Wade, Lawrence A.
    Quake, Stephen R.
    PHYSICAL REVIEW LETTERS, 2006, 97 (26)
  • [10] Sub-10 nm Carbon Nanotube Transistor
    Franklin, Aaron D.
    Han, Shu-Jen
    Tulevski, George S.
    Luisier, Mathieu
    Breslin, Chris M.
    Gignac, Lynne
    Lundstrom, Mark S.
    Haensch, Wilfried
    2011 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2011,