Characterisation of Ni carbonate-bearing minerals by UV-Vis-NIR spectroscopy

被引:10
|
作者
Reddy, B. Jagannadha [1 ]
Keeffe, Eloise C. [1 ]
Frost, Ray L. [1 ]
机构
[1] Queensland Univ Technol, Inorgan Mat Res Program, Sch Phys & Chem Sci, Brisbane, Qld 4001, Australia
关键词
NEAR-INFRARED SPECTROSCOPY; NATURAL HYDROTALCITES CARRBOYDITE; ROSASITE GROUP; RAMAN-SPECTROSCOPY; ABSORPTION-SPECTRA; CRYSTAL-STRUCTURES; TAKOVITE; NICKEL; MALACHITE; HYDROHONESSITE;
D O I
10.1007/s11243-009-9324-7
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Four nickel carbonate-bearing minerals from Australia have been investigated to study the effect of Ni for Mg substitution. The spectra of nullaginite, zaratite, widgiemoolthalite and takovite show three main features in the range of 26,720-25,855 cm(-1) (nu(1)-band), 15,230-14,740 cm(-1) (nu(2)-band) and 9,200-9,145 cm(-1) (nu(3)-band) which are characteristic of divalent nickel in six-fold coordination. The Crystal Field Stabilization Energy (CFSE) of Ni2+ in the four carbonates is calculated from the observed (3)A(2g)(F-3) -> T-3(2g)(F-3) transition. CFSE is dependent on mineralogy, crystallinity and chemical composition (Al/Mg-content). The splitting of the nu(1)- and nu(3)-bands and non-Gaussian shape of nu(3)-band in the minerals are the effects of Ni-site distortion from regular octahedral. The effect of structural cation substitutions (Mg2+, Ni2+, Fe2+ and trivalent cations, Al3+, Fe3+) in the carbonate minerals is noticed on band shifts. Thus, electronic bands in the UV-Vis-NIR spectra and the overtones and combination bands of OH and carbonate ion in NIR show shifts to higher wavenumbers, particularly for widgiemoolthalite and takovite.
引用
收藏
页码:279 / 287
页数:9
相关论文
共 50 条
  • [1] Characterisation of Ni carbonate-bearing minerals by UV–Vis–NIR spectroscopy
    B. Jagannadha Reddy
    Eloise C. Keeffe
    Ray L. Frost
    Transition Metal Chemistry, 2010, 35 : 279 - 287
  • [2] Characterisation of Ni silicate-bearing minerals by UV-vis-NIR spectroscopy Effect of Ni substitution in hydrous Ni-Mg silicates
    Reddy, B. Jagannadha
    Frost, Ray L.
    Dickfos, Marilla J.
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2009, 71 (05) : 1762 - 1768
  • [3] Characterisation of red mud by UV-vis-NIR spectroscopy
    Palmer, Sara J.
    Reddy, B. Jagannadha
    Frost, Ray L.
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2009, 71 (05) : 1814 - 1818
  • [4] The use of UV-VIS-NIR reflectance spectroscopy to identify iron minerals
    Szalai, Z.
    Kiss, K.
    Jakab, G.
    Sipos, P.
    Belucz, B.
    Nemeth, T.
    ASTRONOMISCHE NACHRICHTEN, 2013, 334 (09) : 940 - 943
  • [5] UV-VIS-NIR spectroscopy and microscopy of heterogeneous catalysts
    Schoonheydt, Robert A.
    CHEMICAL SOCIETY REVIEWS, 2010, 39 (12) : 5051 - 5066
  • [6] In Situ UV-Vis-NIR Absorption Spectroscopy and Catalysis
    Bols, Max L.
    Ma, Jing
    Rammal, Fatima
    Plessers, Dieter
    Wu, Xuejiao
    Navarro-Jaen, Sara
    Heyer, Alexander J.
    Sels, Bert F.
    Solomon, Edward I.
    Schoonheydt, Robert A.
    CHEMICAL REVIEWS, 2024, 124 (05) : 2352 - 2418
  • [7] RAMAN AND UV-VIS-NIR SPECTROSCOPY OF PHOSPHATE GLASSES
    Al Mugren, K. S.
    El Sayed, Y.
    Shoukry, H.
    El Taher, A.
    DIGEST JOURNAL OF NANOMATERIALS AND BIOSTRUCTURES, 2016, 11 (02) : 607 - 614
  • [8] Cholesterol determination in egg yolk by UV-VIS-NIR spectroscopy
    Puertas, Gema
    Vazquez, Manuel
    FOOD CONTROL, 2019, 100 : 262 - 268
  • [9] Bilyana Kostova - UV-VIS-NIR spectroscopy: applications in mineralogy
    Kostova, Bilyana V.
    REVIEW OF THE BULGARIAN GEOLOGICAL SOCIETY, 2006, 67 : 149 - 153
  • [10] Dyed blue chalcedony detected by UV-Vis-NIR Spectroscopy
    Inns, Alethea
    GEMS & GEMOLOGY, 2007, 43 (03): : 245 - 246