Complete synchronizability of chaotic systems:: A geometric approach

被引:15
|
作者
Solís-Perales, G
Ayala, V
Kliemann, W
Femat, R
机构
[1] IPICyT, Dept Matemat & Sistemas Computac, San Luis Potosi 78231, SLP, Mexico
[2] Univ Catolica Norte, Dept Matemat, Antofagasta, Chile
[3] Iowa State Univ Sci & Technol, Dept Math, Ames, IA 50011 USA
关键词
D O I
10.1063/1.1566511
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Synchronizability of chaotic systems is studied in this contribution. Geometrical tools are used to understand the properties of vector fields in affine systems. The discussion is focused on synchronizability of chaotic systems with equal order. The analysis is based on the synchronous behavior of all states of the master/slave system (complete synchronization). We state sufficient and necessary conditions for complete synchronizability which are based on controllability and observability of nonlinear affine systems. In this sense, the synchronizability is studied for complete synchronization via state feedback control. (C) 2003 American Institute of Physics.
引用
收藏
页码:495 / 501
页数:7
相关论文
共 50 条
  • [1] THE GEOMETRIC PHASE FOR CHAOTIC SYSTEMS
    ROBBINS, JM
    BERRY, MV
    PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1992, 436 (1898): : 631 - 661
  • [2] Parameter estimation for chaotic systems using a geometric approach: theory and experiment
    C. C. Olson
    J. M. Nichols
    L. N. Virgin
    Nonlinear Dynamics, 2012, 70 : 381 - 391
  • [3] Parameter estimation for chaotic systems using a geometric approach: theory and experiment
    Olson, C. C.
    Nichols, J. M.
    Virgin, L. N.
    NONLINEAR DYNAMICS, 2012, 70 (01) : 381 - 391
  • [4] Synchronizability of networks of chaotic systems coupled via a graph with a prescribed degree sequence
    Wu, CW
    PHYSICS LETTERS A, 2005, 346 (04) : 281 - 287
  • [5] Complete synchronization of chaotic systems
    Saha, L. M.
    Budhraja, Mridula
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2007, 77A : 161 - 168
  • [6] Perturbation of coupling matrices and its effect on the synchronizability in arrays of coupled chaotic systems
    Wu, CW
    PHYSICS LETTERS A, 2003, 319 (5-6) : 495 - 503
  • [7] A geometric approach to complete reducibility
    Michael Bate
    Benjamin Martin
    Gerhard Röhrle
    Inventiones mathematicae, 2005, 161 : 177 - 218
  • [8] A geometric approach to complete reducibility
    Bate, M
    Martin, B
    Röhrle, G
    INVENTIONES MATHEMATICAE, 2005, 161 (01) : 177 - 218
  • [9] Synchronizability of Discrete Nonlinear Systems: A Master Stability Function Approach
    Ramasamy, Mohanasubha
    Kumarasamy, Suresh
    Sampathkumar, Sakthi Kumar
    Karthikeyan, Anitha
    Rajagopal, Karthikeyan
    COMPLEXITY, 2023, 2023
  • [10] Synchronizability of chaotic logistic maps in delayed complex networks
    M. Ponce C.
    C. Masoller
    Arturo C. Martí
    The European Physical Journal B, 2009, 67 : 83 - 93