Hydroxycholesterol substitution in ionizable lipid nanoparticles for mRNA delivery to T cells

被引:65
|
作者
Patel, Savan K. [1 ]
Billingsley, Margaret M. [1 ]
Frazee, Caitlin [1 ]
Han, Xuexiang [1 ]
Swingle, Kelsey L. [1 ]
Qin, Jingya [1 ]
Alameh, Mohamad-Gabriel [2 ]
Wang, Karin [3 ]
Weissman, Drew [2 ]
Mitchell, Michael J. [1 ,4 ,5 ,6 ,7 ,8 ]
机构
[1] Univ Penn, Dept Bioengn, Philadelphia, PA 19104 USA
[2] Univ Penn, Perelman Sch Med, Philadelphia, PA 19104 USA
[3] Temple Univ, Dept Bioengn, Philadelphia, PA 19122 USA
[4] Univ Penn, Abramson Canc Ctr, Perelman Sch Med, Philadelphia, PA 19104 USA
[5] Univ Penn, Inst Immunol, Perelman Sch Med, Philadelphia, PA 19104 USA
[6] Univ Penn, Cardiovasc Inst, Perelman Sch Med, Philadelphia, PA 19104 USA
[7] Univ Penn, Inst Regenerat Med, Perelman Sch Med, Philadelphia, PA 19104 USA
[8] Univ Penn, Dept Bioengn, 210 South 33 Rd St,240 Skirkanich Hall, Philadelphia, PA 19104 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Lipid nanoparticles; mRNA delivery; Cholesterol; Endosomal trafficking; GENE-THERAPIES; SIRNA DELIVERY; IN-VITRO; CHOLESTEROL; VIVO; IMMUNOTHERAPY; FORMULATIONS; HOMEOSTASIS; OXYSTEROLS; STRATEGIES;
D O I
10.1016/j.jconrel.2022.05.020
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Delivery of nucleic acids, such as mRNA, to immune cells has become a major focus in the past decade with ionizable lipid nanoparticles (LNPs) emerging as a clinically-validated delivery platform. LNPs-typically composed of ionizable lipids, cholesterol, phospholipids, and polyethylene glycol lipids -have been designed and optimized for a variety of applications including cancer therapies, vaccines, and gene editing. However, LNPs have only recently been investigated for delivery to T cells, which has various therapeutic applications including the engineering of T cell immunotherapies. While several LNP formulations have been evaluated for mRNA delivery, recent work has demonstrated that the utilization of cholesterol analogs may enhance mRNA delivery. Other studies have shown that cholesterols modified with hydroxyl groups can alter endocytic recycling mechanisms. Here, we engineered a library of LNPs incorporating hydroxycholesterols to evaluate their impact on mRNA delivery to T cells by leveraging endosomal trafficking mechanisms. Substitution of 25% and 50% 7 alpha hydroxycholesterol for cholesterol in LNPs enhanced mRNA delivery to primary human T cells ex vivo by 1.8-fold and 2.0-fold, respectively. Investigation of endosomal trafficking revealed that these modifications also increase late endosome production and reduce the presence of recycling endosomes. These results suggest that hydroxyl modification of cholesterol molecules incorporated into LNP formulations provides a mechanism for improving delivery of nucleic acid cargo to T cells for a range of immunotherapy applications.
引用
收藏
页码:521 / 532
页数:12
相关论文
共 50 条
  • [1] Ionizable Lipid Nanoparticles for mRNA Delivery
    Tang, Xuefeng
    Zhang, Ying
    Han, Xiaojun
    ADVANCED NANOBIOMED RESEARCH, 2023, 3 (08):
  • [2] Ionizable lipid nanoparticles for in utero mRNA delivery
    Riley, Rachel S.
    Kashyap, Meghana, V
    Billingsley, Margaret M.
    White, Brandon
    Alameh, Mohamad-Gabriel
    Bose, Sourav K.
    Zoltick, Philip W.
    Li, Hiaying
    Zhang, Rui
    Cheng, Andrew Y.
    Weissman, Drew
    Peranteau, William H.
    Mitchell, Michael J.
    SCIENCE ADVANCES, 2021, 7 (03)
  • [3] A fluorinated ionizable lipid improves the mRNA delivery efficiency of lipid nanoparticles
    Huo, Haonan
    Cheng, Xingdi
    Xu, Jiaxi
    Lin, Jiaqi
    Chen, Ning
    Lu, Xueguang
    JOURNAL OF MATERIALS CHEMISTRY B, 2023, 11 (19) : 4171 - 4180
  • [4] CD3 and CD8 targeting of ionizable lipid nanoparticles for in vivo mRNA delivery to T cells
    Robinson, Elise R.
    Kare, Aris J.
    Kheirolomoom, Azadeh
    Inayathullah, Mohammed
    Tumbale, Spencer K.
    Wu, Bo
    Raie, Marina N.
    Seo, Jai W.
    Salazar, Felix B.
    Paulmurugan, Ramasamy
    Wu, Anna M.
    Ferrara, Katherine W.
    CANCER RESEARCH, 2022, 82 (12)
  • [5] Ionizable Lipid Nanoparticles for In Vivo mRNA Delivery to the Placenta during Pregnancy
    Mitchell, Michael J.
    Swingle, Kelsey L.
    Safford, Hannah C.
    Geisler, Hannah C.
    Hamilton, Alex G.
    Thatte, Ajay S.
    Billingsley, Margaret M.
    Joseph, Ryann A.
    Mrksich, Kaitlin
    Padilla, Marshall S.
    Ghalsasi, Aditi A.
    Alameh, Mohamad-Gabriel
    Weissman, Drew
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (08) : 4691 - 4706
  • [6] Polysorbate 80-containing ionizable lipid nanoparticles for mRNA delivery
    Tang, Xuefeng
    Ding, Shixiao
    Yang, Shilin
    Cheng, Yuqiao
    Liu, Hanyu
    Chen, Kexin
    Han, Xiaojun
    BIOMATERIALS SCIENCE, 2024, 12 (21) : 5573 - 5581
  • [7] Delivery of Plasmid DNA by Ionizable Lipid Nanoparticles to Induce CAR Expression in T Cells
    Prazeres, Pedro Henrique Dias Moura
    Ferreira, Heloisa
    Costa, Pedro Augusto Carvalho
    da Silva, Walison
    Alves, Marco Tullio
    Padilla, Marshall
    Thatte, Ajay
    Santos, Anderson Kenedy
    Lobo, Anderson Oliveira
    Sabino, Adriano
    Del Puerto, Helen Lima
    Mitchell, Michael J.
    Guimaraes, Pedro Pires Goulart
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2023, 18 : 5891 - 5904
  • [8] Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening
    Guimaraes, Pedro P. G.
    Zhang, Rui
    Spektor, Roman
    Tan, Mingchee
    Chung, Amanda
    Billingsley, Margaret M.
    El-Mayta, Rakan
    Riley, Rachel S.
    Wang, Lili
    Wilson, James M.
    Mitchell, Michael J.
    JOURNAL OF CONTROLLED RELEASE, 2019, 316 : 404 - 417
  • [9] TLR7-Adjuvanted Ionizable Lipid Nanoparticles for mRNA Vaccine Delivery
    Bishal Misra
    Krystal A. Hughes
    William H. Pentz
    Morgan Surface
    Werner J. Geldenhuys
    Sharan Bobbala
    The AAPS Journal, 27 (4)
  • [10] mRNA Synthesis and Encapsulation in Ionizable Lipid Nanoparticles
    McKenzie, Rebecca Elizabeth
    Minnell, Jordan James
    Ganley, Mitch
    Painter, Gavin Frank
    Draper, Sarah Louise
    CURRENT PROTOCOLS, 2023, 3 (09):