Density of rational functions in hardy Bergman spaces

被引:0
|
作者
Qiu, Zhijian [1 ]
机构
[1] SW Univ Finance & Econ, Dept Math, Chengdu 610074, Peoples R China
来源
关键词
Hardy space; Bergman space and approximation by rational functions;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a bounded finitely connected domain in the complex plane such that no component of partial derivative G reduces to a point. Let A(G) be the set of all functions analytic on G and continuous on (G) over bar and let R((G) over bar) be the closure of all rational functions with poles off (G) over bar. In this paper, we investigate the problem of when A(G) (R((G) over bar)) is dense in the Hardy space H-q (G). We give several equivalent conditions under which A(G) is dense in H-q(G). We also show that if G is simply connected, then A(G) is dense in H-2 (G) if and only if A(G) is dense in L-a(2).(G).
引用
收藏
页码:317 / 324
页数:8
相关论文
共 50 条
  • [1] Rational Approximation of Functions in Hardy Spaces
    Deng, Guantie
    Qian, Tao
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2016, 10 (05) : 903 - 920
  • [2] Rational Approximation of Functions in Hardy Spaces
    Guantie Deng
    Tao Qian
    Complex Analysis and Operator Theory, 2016, 10 : 903 - 920
  • [3] Rational Approximation of Functions in Hardy Spaces
    Deng Guantie
    Li Haichou
    Qian Tao
    NEW TRENDS IN ANALYSIS AND INTERDISCIPLINARY APPLICATIONS, 2017, : 189 - 197
  • [4] Riesz's functions in weighted Hardy and Bergman spaces
    Nakazi, T
    Yamada, M
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1996, 48 (05): : 930 - 945
  • [5] Univalent functions in Hardy, Bergman, Bloch and related spaces
    Fernando Pérez-González
    Jouni Rättyä
    Journal d'Analyse Mathématique, 2008, 105 : 125 - 148
  • [6] Univalent functions in hardy, bergman, bloch and related spaces
    Perez-Gonzalez, Fernando
    Rattya, Jouni
    JOURNAL D ANALYSE MATHEMATIQUE, 2008, 105 (1): : 125 - 148
  • [7] Density of the polynomials in Hardy and Bergman spaces of slit domains
    Akeroyd, John R.
    ARKIV FOR MATEMATIK, 2011, 49 (01): : 1 - 16
  • [8] UNCERTAINTY PRINCIPLE FOR RATIONAL FUNCTIONS IN HARDY SPACES
    Xiong, Dan
    Chai, Li
    Zhang, Jingxin
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 4364 - 4368
  • [9] Geometric Hardy and Bergman spaces
    Bertram, W
    Hilgert, J
    MICHIGAN MATHEMATICAL JOURNAL, 2000, 47 (02) : 235 - 263
  • [10] On harmonic Hardy and Bergman spaces
    Stevic, S
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2002, 54 (04) : 983 - 996