Automotive sensing: Assessing the impact of fog on LWIR, MWIR, SWIR, visible, and LiDAR imaging performance

被引:15
|
作者
Judd, Kelsey M. [1 ]
Thornton, Michael P. [1 ]
Richards, Austin A. [1 ]
机构
[1] FLIR Syst Inc, Wilsonville, OR 97070 USA
来源
关键词
Longwave IR; LWIR; ADAS; autonomous vehicle; fog; MWIR; SWIR; swux; pedestrian detection; multispectral; LiDAR;
D O I
10.1117/12.2519423
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Autonomous vehicle sensor suites must perform in a variety of weather conditions to achieve acceptable levels of safety and reliability. Fog is one of the most challenging driving conditions. This paper presents qualitative performance data of thermal infrared (both longwave and midwave), shortwave infrared, and visible-light imaging sensors under different test-chamber fogs. We find that the performance of LWIR imaging is impacted significantly less by light-to-moderate fog than the other two IR sensors, the visible imager, and a low-resolution Velodyne LiDAR. The paper recommends additional fog chamber testing to generate data that will be useful for the development of imaging simulation capability that accurately models fog across these wavebands for improved reliability and coverage in the development of ADAS and autonomous vehicle (AV) vision systems.
引用
收藏
页数:13
相关论文
共 21 条
  • [1] Performance Enhancement of a Triple Band SWIR-MWIR-LWIR Photodetector
    Dehzangi, Arash
    IMAGE SENSING TECHNOLOGIES:MATERIALS, DEVICES, SYSTEMS, AND APPLICATIONS XI, 2024, 13030
  • [2] Impact of path radiance on MWIR and LWIR imaging
    Hodgkin, Van A.
    Maurer, Tana
    Halford, Carl
    Vollmerhausen, Richard
    INFRARED IMAGING SYSTEMS: DESIGN, ANALYSIS, MODELING, AND TESTING XVIII, 2007, 6543
  • [3] Performance analysis on MWIR and LWIR pushbroom imaging
    Ma, Wenpo
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2014, 43 (12): : 3861 - 3865
  • [4] A Comparison of MWIR and LWIR Imaging Systems with regard to Range Performance
    Turgut, Berk Berkan
    Artan, Goktug Gencehan
    Bek, Alpan
    INFRARED IMAGING SYSTEMS: DESIGN, ANALYSIS, MODELING, AND TESTING XXIX, 2018, 10625
  • [5] Advanced computational sensors technology: Testing and evaluation in visible, SWIR, and LWIR Imaging
    Rizk, Charbel G.
    Wilson, John P.
    Pouliquen, Philippe
    IMAGE SENSING TECHNOLOGIES: MATERIALS, DEVICES, SYSTEMS, AND APPLICATIONS II, 2015, 9481
  • [6] Automotive LiDAR performance verification in fog and rain
    Kutila, M.
    Pyykonen, P.
    Holzhueter, H.
    Colomb, M.
    Duthon, P.
    2018 21ST INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2018, : 1695 - 1701
  • [7] Evaluation of chalcogenide glasses for multispectral imaging in the visible, SWIR and LWIR spectral regions
    Brehault, A.
    Calvez, L.
    Pain, T.
    Ma, H. L.
    Bigou, D.
    Duchene, M.
    Adam, P.
    Rollin, J.
    Zhang, X. H.
    ADVANCED OPTICS FOR DEFENSE APPLICATIONS: UV THROUGH LWIR, 2016, 9822
  • [8] Nanostructured Antireflection Coating Technology for Enhanced MWIR and LWIR Band Sensing Performance
    Sood, Ashok K.
    Zeller, John W.
    Sood, Adam W.
    Ghuman, Parminder
    Babu, Sachidananda
    Gunapala, Sarath
    Soibel, Alex
    Ting, David
    Chaudhary, Latika S.
    Efstathiadis, Harry
    INFRARED SENSORS, DEVICES, AND APPLICATIONS XII, 2022, 12234
  • [9] LWIR/MWIR imaging hyperspectral sensor for airborne and ground-based remote sensing
    Hackwell, JA
    Warren, DW
    Bongiovi, RP
    Hansel, SJ
    Hayhurst, TL
    Mabry, DJ
    Sivjee, MG
    Skinner, JW
    IMAGING SPECTROMETRY II, 1996, 2819 : 102 - 107
  • [10] A Methodology to Model the Rain and Fog Effect on the Performance of Automotive LiDAR Sensors
    Haider, Arsalan
    Pigniczki, Marcell
    Koyama, Shotaro
    Koehler, Michael H.
    Haas, Lukas
    Fink, Maximilian
    Schardt, Michael
    Nagase, Koji
    Zeh, Thomas
    Eryildirim, Abdulkadir
    Poguntke, Tim
    Inoue, Hideo
    Jakobi, Martin
    Koch, Alexander W.
    SENSORS, 2023, 23 (15)