Rank one chaos in a class of planar systems with heteroclinic cycle

被引:11
|
作者
Chen, Fengjuan [1 ,2 ]
Han, Maoan [1 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
关键词
STRANGE ATTRACTORS;
D O I
10.1063/1.3263945
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study rank one chaos in a class of planar systems with heteroclinic cycle. We first find a stable limit cycle inside the heteroclinic cycle. We then add an external periodic forcing to create rank one chaos. We follow a step-by-step procedure guided by the theory of rank one chaos to find experimental evidence of strange attractors with Sinai, Ruelle, and Bowen measures. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3263945]
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Homoclinic and Heteroclinic Orbits for a Class of Singular Planar Newtonian Systems
    Janczewska, Joanna
    EXTENDED ABSTRACTS SPRING 2014: HAMILTONIAN SYSTEMS AND CELESTIAL MECHANICS; VIRUS DYNAMICS AND EVOLUTION, 2015, : 39 - 43
  • [2] Heteroclinic bifurcation in a class of planar piecewise smooth systems with multiple zones
    Shen, Jun
    Du, Zhengdong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03):
  • [3] Heteroclinic bifurcation in a class of planar piecewise smooth systems with multiple zones
    Jun Shen
    Zhengdong Du
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [4] Homoclinic Loops, Heteroclinic Cycles, and Rank One Dynamics
    Mohapatra, Anushaya
    Ott, William
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2015, 14 (01): : 107 - 131
  • [5] Limit cycle uniqueness for a class of planar dynamical systems
    Sabatini, M.
    Villari, G.
    APPLIED MATHEMATICS LETTERS, 2006, 19 (11) : 1180 - 1184
  • [6] The Melnikov method of heteroclinic orbits for a class of planar hybrid piecewise-smooth systems and application
    Shuangbao Li
    Chao Shen
    Wei Zhang
    Yuxin Hao
    Nonlinear Dynamics, 2016, 85 : 1091 - 1104
  • [7] The Melnikov method of heteroclinic orbits for a class of planar hybrid piecewise-smooth systems and application
    Li, Shuangbao
    Shen, Chao
    Zhang, Wei
    Hao, Yuxin
    NONLINEAR DYNAMICS, 2016, 85 (02) : 1091 - 1104
  • [8] RANK-ONE STRANGE ATTRACTORS VERSUS HETEROCLINIC TANGLES
    Rodrigues, Alexandre A.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (09) : 3213 - 3245
  • [9] Coexistence of three heteroclinic cycles and chaos analyses for a class of 3D piecewise affine systems
    Wang, Fanrui
    Wei, Zhouchao
    Zhang, Wei
    Moroz, Irene
    CHAOS, 2023, 33 (02)
  • [10] Heteroclinic cycles and chaos in a class of 3D three-zone piecewise affine systems
    Lu, Kai
    Yang, Qigui
    Xu, Wenjing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 478 (01) : 58 - 81