Inhomogeneous losses and complexness of wave functions in chaotic cavities

被引:30
|
作者
Savin, D. V. [1 ]
Legrand, O.
Mortessagne, F.
机构
[1] Brunel Univ, Dept Math Sci, Uxbridge UB8 3PH, Middx, England
[2] Univ Duisburg Essen, Fachbereich Phys, D-45117 Essen, Germany
[3] Univ Nice, CNRS, UMR 6622, Phys Mat Condensee Lab, F-06108 Nice 2, France
来源
EUROPHYSICS LETTERS | 2006年 / 76卷 / 05期
关键词
D O I
10.1209/epl/i2006-10358-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In a two-dimensional microwave chaotic cavity Ohmic losses located at the contour of the cavity result in different broadenings of different modes. We provide an analytic description and establish the link between such an inhomogeneous damping and the complex (non-real) character of biorthogonal wave functions. This substantiates the corresponding recent experimental findings of Barthelemy et al. (Europhys. Lett., 70 (2005) 162).
引用
收藏
页码:774 / 779
页数:6
相关论文
共 50 条
  • [1] Imaging of the scarred wave functions in chaotic quantum cavities
    Takagaki, Y
    Ploog, KH
    PHYSICAL REVIEW B, 2004, 70 (07) : 073304 - 1
  • [2] Inhomogeneous resonance broadening and statistics of complex wave functions in a chaotic microwave cavity
    Barthélemy, J
    Legrand, O
    Mortessagne, F
    EUROPHYSICS LETTERS, 2005, 70 (02): : 162 - 168
  • [3] WAVE SOLUTIONS FOR VARIABLE LOADING OF CAVITIES IN INHOMOGENEOUS PLATES
    MOODIE, TB
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1991, 29 (01) : 87 - 98
  • [4] Quasi-analytical computation of energy levels and wave functions in a class of chaotic cavities with inserted objects
    Seydou, F.
    Ramahi, O. M.
    Seppaenem, T.
    MATHEMATICAL MODELING, SIMULATION, VISUALIZATION AND E-LEARNING, 2008, : 3 - 15
  • [5] ELECTROMAGNETIC-WAVE PROPAGATION IN CHAOTIC INHOMOGENEOUS DIELECTRICS
    GRIGOREV, OA
    SHERMERGOR, TD
    ZHURNAL TEKHNICHESKOI FIZIKI, 1981, 51 (07): : 1541 - 1544
  • [6] Elastic wave scattering around cavities in inhomogeneous continua by the BEM
    Manolis, GD
    JOURNAL OF SOUND AND VIBRATION, 2003, 266 (02) : 281 - 305
  • [7] Spatial correlations of chaotic wave functions
    Prigodin, VN
    Taniguchi, N
    MODERN PHYSICS LETTERS B, 1996, 10 (3-5): : 69 - 80
  • [8] Perturbation theory for resonances in wave-chaotic resonant cavities
    Hackenbroich, G
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2001, 9 (03): : 560 - 563
  • [9] Wave Chaotic Characterization of Complex Cavities: Distributed Ports and Coupling
    Antonsen, Thomas M., Jr.
    Gradoni, Gabriele
    Anlage, Steven
    Ott, Edward
    10TH INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, 2011, : 549 - 554
  • [10] Correlation functions of impedance and scattering matrix elements in chaotic absorbing cavities
    Savin, DV
    Fyodorov, YV
    Sommers, HJ
    ACTA PHYSICA POLONICA A, 2006, 109 (01) : 53 - 64