Studying stellar binary systems with the Laser Interferometer Space Antenna using delayed rejection Markov chain Monte Carlo methods

被引:4
|
作者
Trias, Miquel [1 ]
Vecchio, Alberto [2 ]
Veitch, John [2 ]
机构
[1] Univ Illes Balears, Dept Fis, E-07122 Palma de Mallorca, Spain
[2] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England
基金
英国科学技术设施理事会;
关键词
INFERENCE;
D O I
10.1088/0264-9381/26/20/204024
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Bayesian analysis of Laser Interferometer Space Antenna (LISA) data sets based on Markov chain Monte Carlo methods has been shown to be a challenging problem, in part due to the complicated structure of the likelihood function consisting of several isolated local maxima that dramatically reduces the efficiency of the sampling techniques. Here we introduce a new fully Markovian algorithm, a delayed rejection Metropolis-Hastings Markov chain Monte Carlo method, to efficiently explore these kind of structures and we demonstrate its performance on selected LISA data sets containing a known number of stellar-mass binary signals embedded in Gaussian stationary noise.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Using Early Rejection Markov Chain Monte Carlo and Gaussian Processes to Accelerate ABC Methods
    Cao, Xuefei
    Wang, Shijia
    Zhou, Yongdao
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024,
  • [2] Estimation of binary Markov random fields using Markov chain Monte Carlo
    Smith, D
    Smith, M
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2006, 15 (01) : 207 - 227
  • [3] Path Space Markov Chain Monte Carlo Methods in Computer Graphics
    Jakob, Wenzel
    MONTE CARLO AND QUASI-MONTE CARLO METHODS, 2016, 163 : 107 - 141
  • [4] Comprehensive benchmarking of Markov chain Monte Carlo methods for dynamical systems
    Ballnus, Benjamin
    Hug, Sabine
    Hatz, Kathrin
    Goerlitz, Linus
    Hasenauer, Jan
    Theis, Fabian J.
    BMC SYSTEMS BIOLOGY, 2017, 11
  • [5] Seriation in paleontological data using Markov chain Monte Carlo methods
    Puolamaki, Kai
    Fortelius, Mikael
    Mannila, Heikki
    PLOS COMPUTATIONAL BIOLOGY, 2006, 2 (02) : 62 - 70
  • [6] NUCLEAR PDF DETERMINATION USING MARKOV CHAIN MONTE CARLO METHODS
    Derakhshanian, N.
    Risse, P.
    Jezo, T.
    Klasen, M.
    Kovarik, K.
    Kusina, A.
    Olness, F. I.
    Schienbein, I.
    ACTA PHYSICA POLONICA B PROCEEDINGS SUPPLEMENT, 2023, 16 (07)
  • [7] LISA data analysis using Markov chain Monte Carlo methods
    Cornish, NJ
    Crowder, J
    PHYSICAL REVIEW D, 2005, 72 (04): : 1 - 15
  • [8] On solving integral equations using Markov chain Monte Carlo methods
    Doucet, Arnaud
    Johansen, Adam M.
    Tadic, Vladislav B.
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (10) : 2869 - 2880
  • [9] Phylogenetic inference for binary data on dendograms using Markov chain Monte Carlo
    Mau, B
    Newton, MA
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1997, 6 (01) : 122 - 131
  • [10] Parameter estimation of spinning binary inspirals using Markov chain Monte Carlo
    van der Sluys, Marc
    Raymond, Vivien
    Mandel, Ilya
    Roever, Christian
    Christensen, Nelson
    Kalogera, Vicky
    Meyer, Renate
    Vecchio, Alberto
    CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (18)