Promises and pitfalls of deep neural networks in neuroimaging-based psychiatric research

被引:29
|
作者
Eitel, Fabian [1 ,2 ,3 ,4 ,5 ]
Schulz, Marc-Andre [1 ,2 ,3 ,4 ,5 ]
Seiler, Moritz [1 ,2 ,3 ,4 ,5 ]
Walter, Henrik [1 ,2 ,3 ,4 ,5 ]
Ritter, Kerstin [1 ,2 ,3 ,4 ,5 ]
机构
[1] Charite Univ Med Berlin, D-10117 Berlin, Germany
[2] Free Univ Berlin, D-10117 Berlin, Germany
[3] Humboldt Univ, D-10117 Berlin, Germany
[4] Dept Psychiat & Psychotherapy, D-10117 Berlin, Germany
[5] Bernstein Ctr Computat Neurosci, D-10117 Berlin, Germany
关键词
Deep learning; Convolutional Neural Networks; Psychiatry; Neuroimaging; MRI; STATE FUNCTIONAL CONNECTIVITY; AUTISM SPECTRUM DISORDER; SUPPORT VECTOR MACHINE; PATTERN-RECOGNITION; IMAGING BIOMARKERS; BRAIN MORPHOMETRY; HIGH-RISK; BIG DATA; CLASSIFICATION; MRI;
D O I
10.1016/j.expneurol.2021.113608
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
By promising more accurate diagnostics and individual treatment recommendations, deep neural networks and in particular convolutional neural networks have advanced to a powerful tool in medical imaging. Here, we first give an introduction into methodological key concepts and resulting methodological promises including representation and transfer learning, as well as modelling domain-specific priors. After reviewing recent applications within neuroimaging-based psychiatric research, such as the diagnosis of psychiatric diseases, delineation of disease subtypes, normative modeling, and the development of neuroimaging biomarkers, we discuss current challenges. This includes for example the difficulty of training models on small, heterogeneous and biased data sets, the lack of validity of clinical labels, algorithmic bias, and the influence of confounding variables.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Neuroimaging-based variability in subtyping biomarkers for psychiatric heterogeneity
    Wen, Zhenfu
    Hammoud, Mira Z.
    Siegel, Carole E.
    Laska, Eugene M.
    Abu-Amara, Duna
    Etkin, Amit
    Milad, Mohammed R.
    Marmar, Charles R.
    MOLECULAR PSYCHIATRY, 2024, : 1966 - 1975
  • [2] Practice research networks: Promises and pitfalls
    Norquist, GS
    CLINICAL PSYCHOLOGY-SCIENCE AND PRACTICE, 2001, 8 (02) : 173 - 175
  • [3] Neuroimaging in Psychiatric Pharmacogenetics Research: The Promise and Pitfalls
    Falcone, Mary
    Smith, Ryan M.
    Chenoweth, Meghan J.
    Bhattacharjee, Abesh Kumar
    Kelsoe, John R.
    Tyndale, Rachel F.
    Lerman, Caryn
    NEUROPSYCHOPHARMACOLOGY, 2013, 38 (12) : 2327 - 2337
  • [4] Neuroimaging in Psychiatric Pharmacogenetics Research: The Promise and Pitfalls
    Mary Falcone
    Ryan M Smith
    Meghan J Chenoweth
    Abesh Kumar Bhattacharjee
    John R Kelsoe
    Rachel F Tyndale
    Caryn Lerman
    Neuropsychopharmacology, 2013, 38 : 2327 - 2337
  • [5] Interpretable Deep Learning for Neuroimaging-Based Diagnostic Classification
    Deshpande, Gopikrishna
    Masood, Janzaib
    Huynh, Nguyen
    Denney Jr, Thomas S.
    Dretsch, Michael N.
    IEEE ACCESS, 2024, 12 : 55474 - 55490
  • [6] A Survey on Deep Learning for Neuroimaging-Based Brain Disorder Analysis
    Zhang, Li
    Wang, Mingliang
    Liu, Mingxia
    Zhang, Daoqiang
    FRONTIERS IN NEUROSCIENCE, 2020, 14
  • [7] Neuroimaging-based Individualized Prediction of Cognition and Behavior for Mental Disorders and Health: Methods and Promises
    Sui, Jing
    Jiang, Rongtao
    Bustillo, Juan
    Calhoun, Vince
    BIOLOGICAL PSYCHIATRY, 2020, 88 (11) : 818 - 828
  • [8] Neuroimaging-based diagnosis of Parkinson's disease with deep neural mapping large margin distribution machine
    Gong, Bangming
    Shi, Jun
    Ying, Shihui
    Dai, Yakang
    Zhang, Qi
    Dong, Yun
    An, Hedi
    Zhang, Yingchun
    NEUROCOMPUTING, 2018, 320 : 141 - 149
  • [9] Automated optimization of deep brain stimulation parameters for modulating neuroimaging-based targets
    Malekmohammadi, Mahsa
    Mustakos, Richard
    Sheth, Sameer
    Pouratian, Nader
    McIntyre, Cameron C.
    Bijanki, Kelly R.
    Tsolaki, Evangelia
    Chiu, Kevin
    Robinson, Meghan E.
    Adkinson, Joshua A.
    Oswalt, Denise
    Carcieri, Stephen
    JOURNAL OF NEURAL ENGINEERING, 2022, 19 (04)
  • [10] Deep learning for neuroimaging-based diagnosis and rehabilitation of Autism Spectrum Disorder: A review
    Khodatars, Marjane
    Shoeibi, Afshin
    Sadeghi, Delaram
    Ghaasemi, Navid
    Jafari, Mahboobeh
    Moridian, Parisa
    Khadem, Ali
    Alizadehsani, Roohallah
    Zare, Assef
    Kong, Yinan
    Khosravi, Abbas
    Nahavandi, Saeid
    Hussain, Sadiq
    Acharya, U. Rajendra
    Berk, Michael
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 139