VO2 nano-sheet negative electrodes for lithium-ion batteries

被引:43
|
作者
Luebke, Mechthild [1 ,2 ]
Ding, Ning [2 ]
Powell, Michael J. [1 ]
Brett, Dan J. L. [3 ]
Shearing, Paul R. [3 ]
Liu, Zhaolin [2 ]
Darr, Jawwad A. [1 ]
机构
[1] UCL, Dept Chem, 20 Gordon St, London WC1H 0AJ, England
[2] ASTAR, Inst Mat Res & Engn IMRE, 2 Fusionopolis Way,Innovis 08-03, Singapore 138634, Singapore
[3] UCL, Dept Chem Engn, Electrochem Innovat Lab, Torrington Pl, London WC1E 7JE, England
基金
英国工程与自然科学研究理事会;
关键词
Continuous hydrothermal flow synthesis; Lithium ion battery; Vanadium oxide; Anode; High power; Pseudocapacitance; ELECTROCHEMICAL ENERGY-STORAGE; HYDROTHERMAL SYNTHESIS; HIGH-PERFORMANCE; HIGH-CAPACITY; ANODE MATERIAL; NANOWIRES; GRAPHENE; CATHODES; HYBRID; TIO2;
D O I
10.1016/j.elecom.2016.01.013
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Vanadium dioxide (VO2) nano-sheets were directly synthesized via a continuous hydrothermal process and were investigated as electrodes in a wide potential range of 0.05-3 V vs. Li/Li+. The nano-sheets showed excellent capacity retention, with a specific capacity of 350 mAh g(-1) at an applied current of 0.1 A g(-1) and 95 mAh g(-1) at 10 A g(-1). Further electrochemical testing suggested that a significant proportion of the charge storage in the cells was due to pseudocapacitive processes. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:56 / 60
页数:5
相关论文
共 50 条
  • [1] Lithium Alanates as Negative Electrodes in Lithium-Ion Batteries
    Silvestri, Laura
    Forgia, Simona
    Farina, Luca
    Meggiolaro, Daniele
    Panero, Stefania
    La Barbera, Aurelio
    Brutti, Sergio
    Reale, Priscilla
    CHEMELECTROCHEM, 2015, 2 (06): : 877 - 886
  • [2] VO2/rGO nanorods as a potential anode for sodium- and lithium-ion batteries
    He, Guang
    Li, Longjun
    Manthiram, Arumugam
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (28) : 14750 - 14758
  • [3] High power nano-Nb2O5 negative electrodes for lithium-ion batteries
    Luebke, Mechthild
    Sumboja, Afriyanti
    Johnson, Ian D.
    Brett, Dan J. L.
    Shearing, Paul R.
    Liu, Zhaolin
    Darr, Jawwad A.
    ELECTROCHIMICA ACTA, 2016, 192 : 363 - 369
  • [4] VO2(B) @ carbon cathodes for lithium ion batteries
    Channu, V. S. Reddy
    Rambabu, B.
    Kumari, Kusum
    Holze, Rudolf
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2015, 481 : 314 - 318
  • [5] Synthesis of Hollow Paramontroseite VO2 Microspheres as Stable Electrode Materials for Lithium-ion Batteries
    Fei, Hailong
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2021, 16 (06): : 1 - 10
  • [6] Lithiated graphite materials for negative electrodes of lithium-ion batteries
    Libich J.
    Vondrák J.
    Sedlaříková M.
    Surface Engineering and Applied Electrochemistry, 2015, 51 (02) : 196 - 201
  • [7] Titanium Oxyfluoride as a Material for Negative Electrodes of Lithium-Ion Batteries
    Astrova, Ekaterina V.
    Ulin, Vladimir P.
    Parfeneva, Alesya V.
    Li, Galina V.
    Yagovkina, Maria A.
    Lozhkina, Darina A.
    Krasilin, Andrei A.
    Tomkovich, Maria V.
    Rumyantsev, Aleksander M.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (05)
  • [8] Layered amorphous silicon as negative electrodes in lithium-ion batteries
    Zhao, Leyi
    Dvorak, D. J.
    Obrovac, M. N.
    JOURNAL OF POWER SOURCES, 2016, 332 : 290 - 298
  • [9] VO2 phase change electrodes in Li-ion batteries
    Castro-Pardo, Samuel
    Puthirath, Anand B.
    Fan, Shaoxun
    Saju, Sreehari
    Yang, Guang
    Nanda, Jagjit
    Vajtai, Robert
    Tang, Ming
    Ajayan, Pulickel M.
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (05) : 2738 - 2747
  • [10] Design and synthesis of a novel nanothorn VO2(B) hollow microsphere and their application in lithium-ion batteries
    Liu, Haimei
    Wang, Yonggang
    Wang, Kaixue
    Hosono, Eiji
    Zhou, Haoshen
    JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (18) : 2835 - 2840