Optimal sensor selection for sensor-based sorting based on automated mineralogy data

被引:19
|
作者
Kern, Marius [1 ]
Tusa, Laura [1 ]
Leissner, Thomas [2 ]
van den Boogaart, Karl Gerald [1 ]
Gutzmer, Jens [1 ]
机构
[1] Helmholtz Zentrum Dresden Rossendorf, Helmholtz Inst Freiberg Resource Technol, Chemnitzer Str 40, D-09599 Freiberg, Germany
[2] Tech Univ Bergakad Freiberg, Inst Mech Proc Engn & Mineral Proc, Agricolastr 1, D-09599 Freiberg, Germany
关键词
Sensor-based sorting; Dual energy X-ray transmission; Short-wave infrared spectroscopy; Automated mineralogy; Cassiterite; Geometallurgy;
D O I
10.1016/j.jclepro.2019.06.259
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Assessing the success of sensor-based sorting in the raw materials industry currently requires time-consuming and expensive empirical test work. In this contribution we illustrate the prospects of successful sensor selection based on data acquired by scanning electron microscopy-based image analysis. Quantitative mineralogical and textural data from more than 100 thin sections were taken to capture mineralogical and textural variability of two different ore types from the Hammerlein Sn-In-Zn deposit, Germany. Parameters such as mineral grain sizes distribution, modal mineralogy, mineral area and mineral density distribution were used to simulate the prospects of sensor-based sorting using different sensors. The results illustrate that the abundance of rock-forming chlorite and/or density anomalies may well be used as proxies for the abundance of cassiterite, the main ore mineral. This suggests that sorting of the Hammerlein ore may well be achieved by either using a short-wavelength infrared detector - to quantify the abundance of chlorite - or a dual-energy X-ray transmission detector to determine the abundance of cassiterite. Empirical tests conducted using commercially available short-wave infrared and dual-energy X-ray transmission sensor systems are in excellent agreement with simulation-based predictions and confirm the potential of the novel approach introduced here. (C) 2019 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:1144 / 1152
页数:9
相关论文
共 50 条
  • [1] Sensor-based sorting
    Pfaff, Florian
    Hanebeck, Uwe D.
    AT-AUTOMATISIERUNGSTECHNIK, 2020, 68 (04) : 229 - 230
  • [2] NEV DEVELOPMENTS IN SENSOR-BASED SORTING
    von Ketelhodt, Luetke
    Bartram, Kai
    RECENT ADVANCES IN MINERAL PROCESSING PLANT DESIGN, 2009, : 476 - 489
  • [3] Sensor-based ore sorting in 2020
    Wotruba, Hermann
    Robben, Christopher
    AT-AUTOMATISIERUNGSTECHNIK, 2020, 68 (04) : 231 - 238
  • [4] Ore Preconcentration with Sensor-Based Sorting
    Wotruba, Hermann
    Riedel, Fabian
    Aufbereitungs-Technik/Mineral Processing, 2005, 46 (05): : 4 - 13
  • [5] Explainable AI for sensor-based sorting systems
    Anneken, Mathias
    Veerappa, Manjunatha
    Huber, Marco F.
    Kuehnert, Christian
    Kronenwett, Felix
    Maier, Georg
    TM-TECHNISCHES MESSEN, 2023, 90 (03) : 154 - 165
  • [6] Processing of aluminium scrap with sensor-based sorting
    Harbeck, Hartmut
    Aufbereitungs-Technik/Mineral Processing, 2006, 47 (12): : 4 - 12
  • [7] State-of-the-art of Sensor-based Sorting
    Wotruba, H.
    BHM Berg- und Huttenmannische Monatshefte, 2008, 153 (06): : 221 - 224
  • [8] Motion-based material characterization in sensor-based sorting
    Maier, Georg
    Pfaff, Florian
    Becker, Florian
    Pieper, Christoph
    Gruna, Robin
    Noack, Benjamin
    Kruggel-Emden, Harald
    Laengle, Thomas
    Hanebeck, Uwe D.
    Wirtz, Siegmar
    Scherer, Viktor
    Beyerer, Juergen
    TM-TECHNISCHES MESSEN, 2018, 85 (03) : 202 - 210
  • [9] POTENTIAL OF SENSOR-BASED SORTING IN ENHANCED LANDFILL MINING
    Kueppers, Bastian
    Hernandez Parrodi, Juan Carlos
    Lopez, Cristina Garcia
    Pomberger, Roland
    Vollprecht, Daniel
    DETRITUS, 2019, 8 : 24 - 30
  • [10] Application of microwave imaging in sensor-based ore sorting
    Duan, Beichen
    Bobicki, Erin R.
    Hum, Sean V.
    MINERALS ENGINEERING, 2023, 202