The laminar, fully developed, transient magnetohydrodynamic (MHD) free convection heat and mass transfer of an electrically conducting micropolar fluid between two vertical plates containing a non-Darcy porous medium with heat generation/absorption and asymmetric wall temperature and concentration has been discussed in this article. A similarity transformation is used to render the problem into a system of coupled, partial, differential equations, which are solved using the finite-element method (FEM). The Solutions are validated with a robust finite difference method (FDM) solver. The present work examines the effect of Darcian parameter, Forchheimer parameter, heat absorption/generation parameter, vortex viscosity parameter, buoyancy ratio parameter, magnetic parameter, and variable thermal conductivity parameter on velocity, angular velocity, temperature and concentration profiles. Space-time graphs of velocity and microrotation are also plotted to provide a better perspective of the flowfield evolution with respect to time. Applications of the study may arise in, for example, packed-bed chemical reactors, materials processing, magnetic field control of chemical engineering transport processes in filter media, purification of hydrocarbons with electromagnetic fields, etc.