Controlling wave fronts with tunable disordered non-Hermitian multilayers

被引:4
|
作者
Novitsky, Denis, V [1 ]
Lyakhov, Dmitry [2 ]
Michels, Dominik [2 ]
Redka, Dmitrii [3 ]
Pavlov, Alexander A. [4 ]
Shalin, Alexander S. [4 ,5 ]
机构
[1] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Nezavisimosti Ave 68, Minsk 220072, BELARUS
[2] King Abdullah Univ Sci & Technol, Visual Comp Ctr, Thuwal 239556900, Saudi Arabia
[3] St Petersburg Electrotech Univ LETI ETU, Prof Popova St 5, St Petersburg 197376, Russia
[4] Russian Acad Sci, Inst Nanotechnol Microelect, Leninsky Prospekt 32A, Moscow 119991, Russia
[5] Russian Acad Sci, Ulyanovsk Branch, Kotelnikov Inst Radio Engn & Elect, Goncharova Str 48, Ulyanovsk 432000, Russia
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
D O I
10.1038/s41598-021-84271-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Unique and flexible properties of non-Hermitian photonic systems attract ever-increasing attention via delivering a whole bunch of novel optical effects and allowing for efficient tuning light-matter interactions on nano- and microscales. Together with an increasing demand for the fast and spatially compact methods of light governing, this peculiar approach paves a broad avenue to novel optical applications. Here, unifying the approaches of disordered metamaterials and non-Hermitian photonics, we propose a conceptually new and simple architecture driven by disordered loss-gain multilayers and, therefore, providing a powerful tool to control both the passage time and the wave-front shape of incident light with different switching times. For the first time we show the possibility to switch on and off kink formation by changing the level of disorder in the case of adiabatically raising wave fronts. At the same time, we deliver flexible tuning of the output intensity by using the nonlinear effect of loss and gain saturation. Since the disorder strength in our system can be conveniently controlled with the power of the external pump, our approach can be considered as a basis for different active photonic devices.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Controlling wave fronts with tunable disordered non-Hermitian multilayers
    Denis V. Novitsky
    Dmitry Lyakhov
    Dominik Michels
    Dmitrii Redka
    Alexander A. Pavlov
    Alexander S. Shalin
    Scientific Reports, 11
  • [2] Wave control in Non-Hermitian disordered media
    Makris, K. G.
    Brandstoetter, A.
    Rotter, S.
    30TH ANNUAL CONFERENCE OF THE IEEE PHOTONICS SOCIETY (IPC), 2017, : 391 - 392
  • [3] Non-Hermitian wave control in scattering disordered media
    Makris, K. G.
    Brandstotter, A.
    Rotter, S.
    2018 IEEE PHOTONICS SOCIETY SUMMER TOPICAL MEETING SERIES (SUM), 2018, : 137 - 138
  • [4] Wave excitation and dynamics in non-Hermitian disordered systems
    Huang, Yiming
    Kang, Yuhao
    Genack, Azriel Z.
    PHYSICAL REVIEW RESEARCH, 2022, 4 (01):
  • [5] Non-hermitian particle in a disordered world
    Zee, A.
    Physica A: Statistical Mechanics and its Applications, 1998, 254 (1-2): : 300 - 316
  • [6] Non-Hermitian jumps in disordered lattices
    Leventis, A.
    Makris, K. G.
    Economou, E. N.
    PHYSICAL REVIEW B, 2022, 106 (06)
  • [7] Phase transitions of wave packet dynamics in disordered non-Hermitian systems
    Spring, Helene
    Koenye, Viktor
    Gerritsma, Fabian A.
    Fulga, Ion Cosma
    Akhmerov, Anton R.
    SCIPOST PHYSICS, 2024, 16 (05):
  • [8] Tunable Non-Hermitian Acoustic Filter
    Puri, S.
    Ferdous, J.
    Shakeri, A.
    Basiri, A.
    Dubois, M.
    Ramezani, H.
    PHYSICAL REVIEW APPLIED, 2021, 16 (01)
  • [9] Controlling Microwaves in Non-Hermitian Metamaterials
    Rao, J. W.
    Zhao, Y. T.
    Gui, Y. S.
    Fan, X. L.
    Xue, D. S.
    Hu, C-M
    PHYSICAL REVIEW APPLIED, 2021, 15 (02):
  • [10] Replica treatment of non-Hermitian disordered Hamiltonians
    Nishigaki, SM
    Kamenev, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (21): : 4571 - 4590