Using symmetries in the eigenvalue method for polynomial systems

被引:6
|
作者
Corless, Robert M. [1 ]
Gatermann, Karin [2 ]
Kotsireas, Ilias S. [3 ]
机构
[1] Univ Western Ontario, Dept Appl Math, Ontario Res Ctr Comp Algebra, London, ON N6A 5B7, Canada
[2] Univ Western Ontario, Dept Comp Sci, London, ON N6A 5B7, Canada
[3] Wilfrid Laurier Univ, Dept Phys & Comp Sci, Waterloo, ON N2L 3C5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
GROBNER BASES; SAGBI-BASES;
D O I
10.1016/j.jsc.2008.11.009
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
One way of solving polynomial systems of equations is by computing a Grobner basis, setting up an eigenvalue problem and then computing the eigenvalues numerically. This so-called eigenvalue method is an excellent bridge between symbolic and numeric computation, enabling the solution of larger systems than with purely symbolic methods. We investigate the case that the system of polynomial equations has symmetries. For systems with symmetry, some matrices in the eigenvalue method turn out to have special structure. The exploitation of this special structure is the aim of this paper. For theoretical development we make use of SAGBI bases of invariant rings. Examples from applications illustrate our new approach. (C) 2009 Published by Elsevier Ltd
引用
收藏
页码:1536 / 1550
页数:15
相关论文
共 50 条
  • [1] Using monodromy to recover symmetries of polynomial systems
    Duff, Timothy
    Korotynskiy, Viktor
    Pajdla, Tomas
    Regan, Margaret
    PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON SYMBOLIC & ALGEBRAIC COMPUTATION, ISSAC 2023, 2023, : 31 - 39
  • [2] Uncovering Symmetries in Polynomial Systems
    Larsson, Viktor
    Astrom, Kalle
    COMPUTER VISION - ECCV 2016, PT III, 2016, 9907 : 252 - 267
  • [3] Resolution of a system of fuzzy polynomial equations using eigenvalue method
    Farahani, Hamed
    Rahmany, Sajjad
    Basiri, Abdolali
    Molai, Ali Abbasi
    SOFT COMPUTING, 2015, 19 (02) : 283 - 291
  • [4] A numerical method for polynomial eigenvalue problems using contour integral
    Junko Asakura
    Tetsuya Sakurai
    Hiroto Tadano
    Tsutomu Ikegami
    Kinji Kimura
    Japan Journal of Industrial and Applied Mathematics, 2010, 27 : 73 - 90
  • [5] A numerical method for polynomial eigenvalue problems using contour integral
    Asakura, Junko
    Sakurai, Tetsuya
    Tadano, Hiroto
    Ikegami, Tsutomu
    Kimura, Kinji
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2010, 27 (01) : 73 - 90
  • [6] Resolution of a system of fuzzy polynomial equations using eigenvalue method
    Hamed Farahani
    Sajjad Rahmany
    Abdolali Basiri
    Ali Abbasi Molai
    Soft Computing, 2015, 19 : 283 - 291
  • [7] An Eigenvalue Theorem for Systems of Polynomial Equations
    Billig, Yuly
    Dixon, John D.
    AMERICAN MATHEMATICAL MONTHLY, 2014, 121 (02): : 150 - 153
  • [8] Eigenvalue Methods for Sparse Tropical Polynomial Systems
    Akian, Marianne
    Bereau, Antoine
    Gaubert, Stephane
    MATHEMATICAL SOFTWARE-ICMS 2024, 2024, 14749 : 299 - 312
  • [9] Solving Systems of Polynomial Equations with Symmetries Using SAGBI-Grobner Bases
    Faugere, Jean-Charles
    Rahmany, Sajjad
    ISSAC2009: PROCEEDINGS OF THE 2009 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, 2009, : 151 - 158
  • [10] On Lie's symmetries for planar polynomial differential systems
    Chavarriga, J
    García, IA
    Giné, J
    NONLINEARITY, 2001, 14 (04) : 863 - 880