Analysis of the Southward Wind Shift of ENSO in CMIP5 Models

被引:13
|
作者
Abellan, Esteban [1 ,2 ]
McGregor, Shayne [3 ]
England, Matthew H. [1 ,2 ]
机构
[1] Univ New South Wales, ARC Ctr Excellence Climate Syst Sci, Sydney, NSW, Australia
[2] Univ New South Wales, Climate Change Res Ctr, Sydney, NSW, Australia
[3] Monash Univ, Sch Earth Atmosphere & Environm, Clayton, Vic, Australia
基金
澳大利亚研究理事会;
关键词
PACIFIC CONVERGENCE ZONE; HEAT-CONTENT VARIABILITY; SEA-SURFACE TEMPERATURE; EL-NINO; TROPICAL PACIFIC; COLD-TONGUE; INTERANNUAL VARIABILITY; CLIMATE SYSTEM; PHASE-LOCKING; MEAN STATE;
D O I
10.1175/JCLI-D-16-0326.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
During the mature phase of El Nino-Southern Oscillation (ENSO) events there is a southward shift of anomalous zonal winds (SWS), which has been suggested to play a role in the seasonal phase locking of ENSO. Motivated by the fact that coupled climate models tend to underestimate this feature, this study examines the representation of the SWS in phase 5 of the Coupled Model Intercomparison Project (CMIP5). It is found that most models successfully reproduce the observed SWS, although the magnitude of the zonal wind stress anomaly is underestimated. Several significant differences between the models with and without the SWS are identified including biases in the magnitude and spatial distribution of precipitation and sea surface temperature (SST) anomalies during ENSO. Multiple-linear regression analysis suggests that the climatological meridional SST gradient as well as anomalous ENSO-driven convective activity over the northwest Pacific both might play a role in controlling the SWS. While the models that capture theSWS also simulate many more strong El Nino and La Nina events peaking at the correct time of year, the overall seasonal synchronization is still underestimated in these models. This is attributed to underestimated changes in warm water volume (WWV) during moderate El Nino events so that these events display relatively poor seasonal synchronization. Thus, while the SWS is an important metric, it is ultimately the magnitude and zonal extent of the wind changes that accompany this SWS that drive the changes in WWV and prime the system for termination.
引用
收藏
页码:2415 / 2435
页数:21
相关论文
共 50 条
  • [1] ENSO Asymmetry in CMIP5 Models
    Zhang, Tao
    Sun, De-Zheng
    JOURNAL OF CLIMATE, 2014, 27 (11) : 4070 - 4093
  • [2] Southward-shift zonal wind patterns during ENSO in CMIP6 models
    Gong, Yuhan
    Li, Tim
    CLIMATE DYNAMICS, 2024, 62 (09) : 8979 - 8992
  • [3] The two types of ENSO in CMIP5 models
    Kim, Seon Tae
    Yu, Jin-Yi
    GEOPHYSICAL RESEARCH LETTERS, 2012, 39
  • [4] Statistical Characteristics of ENSO Events in CMIP5 Models
    RAO Jian
    REN Rong-Cai
    AtmosphericandOceanicScienceLetters, 2014, 7 (06) : 546 - 552
  • [5] Statistical Characteristics of ENSO Events in CMIP5 Models
    Rao Jian
    Ren Rong-Cai
    ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2014, 7 (06) : 546 - 552
  • [6] ENSO representation in climate models: from CMIP3 to CMIP5
    Bellenger, H.
    Guilyardi, E.
    Leloup, J.
    Lengaigne, M.
    Vialard, J.
    CLIMATE DYNAMICS, 2014, 42 (7-8) : 1999 - 2018
  • [7] ENSO representation in climate models: from CMIP3 to CMIP5
    H. Bellenger
    E. Guilyardi
    J. Leloup
    M. Lengaigne
    J. Vialard
    Climate Dynamics, 2014, 42 : 1999 - 2018
  • [8] Evaluating ENSO teleconnections using observations and CMIP5 models
    Indrani Roy
    Alexandre S. Gagnon
    Devendraa Siingh
    Theoretical and Applied Climatology, 2019, 136 : 1085 - 1098
  • [9] Evaluating ENSO teleconnections using observations and CMIP5 models
    Roy, Indrani
    Gagnon, Alexandre S.
    Siingh, Devendraa
    THEORETICAL AND APPLIED CLIMATOLOGY, 2019, 136 (3-4) : 1085 - 1098
  • [10] Nonlinear Zonal Wind Response to ENSO in the CMIP5 Models: Roles of the Zonal and Meridional Shift of the ITCZ/SPCZ and the Simulated Climatological Precipitation
    Choi, Kit-Yan
    Vecchi, Gabriel A.
    Wittenberg, Andrew T.
    JOURNAL OF CLIMATE, 2015, 28 (21) : 8556 - 8573